首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Gleeble-3800热模拟试验机研究了一种新型超高强度不锈钢在变形温度850~1150 ℃,应变速率0.01~10 s-1条件下的热压缩变形行为,建立了钢的热变形方程及动态再结晶晶粒的尺寸模型。结果表明,变形过程中,变形温度降低和应变速率增加都会使钢的高温流变应力增加。应变速率相同时,随着变形温度的升高,动态再结晶程度逐渐增加;而当变形温度相同时,随着应变速率的降低,动态再结晶晶粒发生长大。试验钢的变形激活能为452.02 kJ/mol,热变形方程为:=6.93309×1016[sinh(0.00467σ)] 7.2154exp(),动态再结晶临界应变εc与形变温度和应变速率的关系为:εc=8.89×10-3(exp())0.07328,动态再结晶晶粒尺寸模型为DDRX=947.28×Z-0.123。  相似文献   

2.
对Ti-25V-15Cr-0.2Si阻燃钛合金在温度为950~1100℃,应变速率为0.001~1 s~(-1)条件下进行热压缩试验,研究了该合金在β相区变形时的动态再结晶行为。结果表明,该合金的热变形机制主要是由动态再结晶支配的,而动态再结晶新晶粒主要是通过弓弯形核机制来形成的。当应变速率降低和变形温度升高时动态再结晶易于发生;当应变速率为0.01~0.1 s~(-1),变形温度为950~1050℃时,动态再结晶使晶粒细化;当变形温度高于1100℃,应变速率低于0.001 s~(-1)时,动态再结晶晶粒粗化。为了确定在不同变形条件下的动态再结晶体积分数和动态再结晶晶粒尺寸,分别建立了该合金动态再结晶动力学和动态再结晶晶粒尺寸预测模型。  相似文献   

3.
利用Gleeble-3800热模拟试验机对试验钢在950~1100 ℃,应变速率为0.1~5.0 s-1,最大应变量为60%的条件下进行了热压缩模拟试验。结果表明:高变形温度、低应变速率和大变形量有利于动态再结晶,试验在1050 ℃、变形量60%、变形速率1 s-1条件下得到圆整均匀再结晶晶粒,平均晶粒尺寸为14.84 μm;推演出低碳Ti-Mo微合金马氏体钢的形变激活能为462.8 kJ/mol及Z参数与动态再结晶变形条件的关系;建立起试验钢动态再结晶临界应变公式εc=0.3729Z0.3496。  相似文献   

4.
朱宇  丁宁  熊毅 《热加工工艺》2012,41(12):68-71
在不同变形温度和应变速率下,利用Gleeble-1500D热模拟试验机研究了Cu-P-Cr-Ni-Mo型耐候钢的热变形过程,在获得该钢在不同变形条件下的真应力-真应变曲线的基础上,绘制了该钢的动态再结晶图,并研究了它在不同应变速率下的再结晶行为及显微组织特点。结果表明:该钢的动态再结晶图由三个区域组成,即完全动态再结晶区、部分动态再结晶区和非动态再结晶区;当变形量和温度一定时,应变速率越低,再结晶过程越易进行,且再结晶晶粒所占体积分数和晶粒尺寸也都越大。  相似文献   

5.
在Gleeble-3500热模拟实验机上通过单道次压缩实验,研究了变形温度、应变速率和变形量对TWIP钢流变应力和临界动态再结晶行为的影响规律。结果表明,试验TWIP钢热变形的峰值应力随温度的升高而降低,随着应变速率的增大而升高;各种变形条件下,TWIP钢的奥氏体晶粒尺寸有很大差异,随着变形温度的升高,再结晶晶粒粗化,而应变速率和应变量的增加有利于晶粒细化;最后采用线性回归方法计算出TWIP钢的热变形激活能为443.3 kJ/mol,并求出了该钢种动态再结晶临界条件与Z参数之间的关系,以及动态再结晶动力学规律。  相似文献   

6.
通过Gleeble-3800热力模拟试验机采用高温轴向压缩试验,在温度为850~1150℃,应变速率为0.01~10 s~(-1)的条件下,对一种碳化物和金属间化合物复合析出硬化超高强度20Co14Ni12Cr2Mo Al钢的高温变形及动态再结晶行为进行了研究。结果表明,试验钢流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;随着变形速率的提高,其发生完全动态再结晶的温度也逐渐升高。当变形速率为10 s~(-1)时,其变形温度高于1050℃,才能发生完全动态再结晶;完全动态再结晶晶粒的平均尺寸随着Zener-Hollomon参数的增加而减小,试验钢完全动态再结晶晶粒尺寸与Z参数之间的关系模型为:D_(DRX)=2.644×10~4·Z~(-0.119),并建立了该钢的动态再结晶状态图;试验钢的热变形激活能Q值为449.20 k J/mol。  相似文献   

7.
通过Gleeble-3200热模拟机对EA4T钢进行热压缩实验,研究了应变速率为0.01~10 s~(-1),变形温度为950~1150℃条件下,EA4T钢的热变形行为和组织演变。分析其流变曲线发现,EA4T钢的峰值应力随着温度增大而减小,随着应变速率增大而增大,得到该材料在高的温度和低的应变速率条件下容易发生动态再结晶。基于Arrhenius双曲正弦方程建立了EA4T钢的热变形本构方程;运用数值计算方法,确定了EA4T钢的峰值激活能和稳态激活能分别为385.4和395.4 kJ·mol~(-1);观察温度以及应变速率对试验钢组织演变的影响发现,动态再结晶晶粒尺寸随着变形温度的增加而增大,随着应变速率的增加而减小;通过测量晶粒度,获得动态再结晶晶粒尺寸和Z参数的关系式。  相似文献   

8.
为了研究中碳含钒微合金非调质钢的热变形行为,在变形温度900~1100℃C和应变速率0.01~10 s~(-1)下通过Gleeble-3500热模拟试验机进行了单道次热压缩试验。结果表明:试验钢因热变形而产生加工硬化,使应力得到提升,应力会随着应变速率的提高和热加工温度的降低而有明显的提升,峰值应力随之升高;通过计算得到试验钢的热变形激活能为285.242kJ/mol,并由此得到了试验钢的本构方程;热压缩过程中试验钢发生了动态再结晶,当发生完全动态再结晶时,应变速率较低和温度较高的试样其晶粒尺寸要比应变速率高和温度较低的试样的晶粒尺寸大。  相似文献   

9.
宁静  王敖  苏杰  程兴旺 《锻压技术》2022,(12):234-239
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。  相似文献   

10.
张楚博  米振莉  毛小玲  徐梅 《轧钢》2018,35(1):17-22
采用Gleeble-3500热模拟试验机对超高强DP980钢进行热压缩试验,研究其在变形温度为900~1 200℃、应变速率为0.05~30s~(-1)条件下的动态再结晶行为,分析了变形温度和应变速率对真应力-真应变曲线的影响。结果表明:超高强DP980钢在变形过程中,存在动态再结晶和动态回复两种软化机制,且随着温度的升高和应变速率的降低,临界应变越小,动态再结晶越容易发生;同时,得到了发生动态再结晶时的形变激活能,建立了峰值应变模型、动态再结晶临界应力模型和动态再结晶动力学模型。  相似文献   

11.
氮强化高锰奥氏体钢热变形行为研究   总被引:1,自引:0,他引:1  
利用Gleeble-3500热力模拟试验机在温度为1253~1423K,应变速率为0.1~10s-1的条件下对32Mn-7Cr-1Mo-0.3N奥氏体钢进行了热压缩变形试验,测定了其真应力-应变曲线,观察了变形后的组织.试验结果表明,流变应力和峰值应变随变形温度的降低和应变速率的提高而增大.真应变为0.6时,在1423K、应变速率在0.1~10s-1之间的试样均已发生完全动态再结晶;在1373K以下变形时,应变速率在0.1~10s-1之间,试样发生部分动态再结晶.动态再结晶晶粒尺寸随着变形温度的升高而增大,随着应变速率的升高而减小.32Mn-7Cr-1Mo-0.3N奥氏体钢的热变形激活能Q值为469.03kJ/mol,并获得热变形方程.  相似文献   

12.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

13.
采用Gleeble-1500热模拟实验机对一种新型AM80-xSr-yCa镁合金进行高温压缩变形实验,研究其在温度300℃~450℃、应变速率0.01s-1~10s-1条件下的流变行为。高应变速率下,试样的变形热带来的温升不可忽略,对真应力-真应变的测量值进行相应修正后,求得了本构方程中的系列常量。结果表明,应变速率和变形温度的变化,强烈影响着合金流变应力的大小,流变应力值随变形温度的降低和应变速率的提高而增大;金相组织观察表明,动态再结晶是该实验条件下晶粒细化和材料软化的主要机制,再结晶的程度主要受变形参数影响。变形温度越高,变形量越大,动态再结晶进行的越充分;应变速率越大,再结晶平均晶粒尺寸就越小。  相似文献   

14.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

15.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

16.
采用Gleeble-3500热模拟试验机对超高强度钢AerMet100进行热压缩试验,研究其在变形温度为850~1 150℃和应变速率为0.01~10s~(-1)条件下的动态再结晶行为。结果表明,通过分析应力-应变曲线的特征及金相观察,可知AerMet100钢在不同变形条件下呈现出加工硬化、动态回复及动态再结晶特征,且变形温度的升高与应变速率的降低均有利于发生动态再结晶。通过对热变形试验数据的分析计算,建立了高温变形本构关系,动态再结晶临界应变模型和动态再结晶体积分数模型。利用所建立模型对动态再结晶行为进行预测,得到变形温度的下降及应变速率的增加会推迟动态再结晶发生。  相似文献   

17.
《塑性工程学报》2020,(2):135-143
采用Gleeble-3500热模拟试验机对高铝高强钢在变形速率为0. 01~10 s-1、变形温度为925~1225℃的热变形条件下进行压缩试验,以真应力-应变曲线为基础数据研究其高温再结晶行为。通过对晶粒尺寸的统计来探究热变形条件对热变形后晶粒尺寸的影响。通过处理加工硬化率-应力曲线,标定数据中能揭示动态再结晶演变过程的3个特征点,即临界应变、峰值应变及最大软化速率应变。引入表征晶体动力学的双曲正弦模型,通过线性回归求解得到动态再结晶激活能Q,建立流变应力本构方程,并引入Z参数作为预测发生再结晶程度的依据。结果表明:高铝高强钢热加工过程是加工硬化和再结晶软化共同作用的。在发生再结晶条件范围内,Z值越小,发生动态再结晶的程度越大。  相似文献   

18.
在850、900、950℃,应变速率0.1、1、10 s~(-1)以及真应变0.8和1.0的条件下采用Gleeble-3500对BFe10-1-1铜合金进行热压缩试验。结果表明,在成形过程中有不同程度的动态再结晶发生。在其他成形条件相同条件下,温度为850℃时最有利于动态再结晶的发生;应变速率为1 s~(-1)时,动态再结晶发生的体积数最多,晶粒最细小;低应变速率时,增加变形量有利于动态再结晶;高应变速率时,增加变形量对动态再结晶影响不大。  相似文献   

19.
采用Gleeble-3500热模拟试验机进行高温等温压缩试验,研究了热变形参数对GH690合金晶粒细化的影响.结果表明:当变形程度较小时,随着真应变的增加,GH690合金动态再结晶的晶粒尺寸逐渐减小,但当真应变达到0.5后,随着真应变继续增加,动态再结晶晶粒尺寸变化不大;动态再结晶晶粒尺寸随变形温度的升高而增大,随应变速率的增大而减小.建立起热变形条件即Z参数与动态再结晶晶粒尺寸的关系.  相似文献   

20.
通过Gleeble-1500D热力模拟试验机对SA508-3钢在温度为1073~1473 K,应变速率为0.001~1 s-1时进行了热压缩实验,分析了热变形条件下的SA508-3钢的微观组织。采用常规金相分析研究了温度、应变速率、变形程度等热变形参数对SA508-3钢动态再结晶行为和晶粒尺寸的影响。结果表明,SA508-3钢动态再结晶主要通过晶界弓弯形核。提高变形温度、增大变形程度均有利于再结晶发生。但较高温度和较低应变速率会造成晶粒的过分长大,从而形成粗大组织。SA508-3钢的最佳热加工参数范围为变形温度1173~1473 K和应变速率0.1~0.01 s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号