首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
研究了Nb在快速感应加热条件下对C95油井管用调质钢显微组织的影响。将不同Nb含量的试验钢感应加热到850℃~1000℃后立即淬火,结果表明,不含Nb试验钢奥氏体晶粒尺寸与淬火温度服从 Arrhenius关系(D=8.98×102 exp(-5.8×103/T)),而含Nb试验钢存在一个临界温度Tc ,且Nb含量增加Tc升高,超过临界温度Tc 后服从Arrhenius关系,Tc 以下Nb显著抑制奥氏体晶粒长大。扫描电镜分析表明,Nb不仅减小了奥氏体晶粒尺寸同时还减小了马氏体板条束尺寸,650℃回火后含Nb试验钢的回火硬度较高,不含Nb试验钢的回火硬度随淬火温度的升高而明显下降,而含Nb试验钢的回火硬度随淬火温度升高变化不大。  相似文献   

2.
采用Ti-Mo-B合金化体系,通过洁净钢冶炼技术、控制轧制技术以及离线淬火、回火工艺,成功开发出一种低合金高强度耐磨钢板NM500。通过光学显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)观察试验钢的显微组织,利用万能试验机、摆锤冲击试验机和布氏硬度仪分别检测试验钢的强度、低温韧性和硬度。结果表明,所开发的NM500钢板显微组织为回火板条马氏体,板条内分布着长度50~100 nm,宽约10 nm的ε碳化物以及纳米尺度的微合金元素碳氮化物(Ti,Nb)(C,N),其抗拉强度为1678 MPa,伸长率12.5%,布氏硬度502 HBW,-20℃冲击吸收能量38 J,具有良好的强度、塑性和低温韧性。在相同磨损条件下,所研制的NM500钢的相对耐磨性约为NM400钢的1. 45倍,NM450钢的1. 2倍。  相似文献   

3.
通过光学显微镜观察试验钢的显微组织,利用万能试验机、摆锤冲击试验机和布氏硬度计分别检测试验钢的强度、塑性、冲击性能和硬度,研究了热处理工艺对60CrNiMo轧辊钢组织性能的影响。结果表明,400℃等温淬火时得到的贝氏体和珠光体的混合组织其强度和塑韧性较差;相比较于马氏体等温淬火+高温回火工艺,采用两相区亚温淬火,形成的铁素体和回火马氏体双相组织,可有效改善试验钢的力学性能,并且可以避免淬火裂纹的产生;试验钢经马氏体等温淬火+亚温淬火+高温回火热处理后其布氏硬度为318 HBW,规定塑性延伸强度(R_(p0.2))为797 MPa,抗拉强度为981 MPa,伸长率15%,断面收缩率为46%,室温冲击吸收能量达到66 J,各项性能指标均优于国家标准JB/T 6401—2017中的要求。  相似文献   

4.
通过Cr、Mo等合金化设计出新型槽帮铸钢,利用扫描电镜、拉伸、冲击试验机及布氏硬度计等研究了新型槽帮钢在不同热处理条件下的组织与性能变化。结果表明,添加Cr、Mo等合金元素提高了钢的淬透性和回火稳定性,细化组织并促进碳化物析出,热处理后钢的强度、硬度、塑性和韧性得到明显改善。ZG-1试验钢经900、920℃淬火、500℃回火时抗拉强度为999~1002 MPa,屈服强度931~933 MPa,断后伸长率15.0%~14.0%,室温硬度296~298 HBW,冲击吸收能量61.0~63.0 J;ZG-2试验钢920℃淬火、500~520℃回火时强韧性更优异,抗拉强度1039~1011 MPa,屈服强度981~947 MPa,断后伸长率15.0%~15.3%,室温硬度305~298 HBW,冲击吸收能量64.5~67.5 J,可以满足刮板输送机中部槽材料的性能要求。  相似文献   

5.
采用金相、扫描、透射、电子背散射衍射以及低温冲击等试验手段,研究了在线淬火(DQ)和离线淬火(RQ)两种工艺对Cu沉淀强化钢淬火回火组织和性能的影响。结果表明,在线淬火工艺处理后的试验钢的板条结构比离线淬火工艺处理后的细,位错密度更高;经回火后,在线淬火钢的规定塑性延伸强度达到了665 MPa,离线淬火钢规定塑性延伸强度为590 MPa,但是当温度从-80℃升高到-40℃时,在线淬火钢的低温韧性几乎没有提高,一直保持在10 J左右;当温度升高到-20℃时,韧性也只有95 J。相比之下,离线淬火钢在-40℃下的冲击吸收能量可以达到300 J,并随着温度的升高显著增加。  相似文献   

6.
朱震宇  吴志方  吴润 《金属热处理》2022,47(10):154-159
采用光学显微镜(OM)、扫描电镜(SEM)和材料表面综合性能测试仪等研究了回火温度对NM500低合金高强度耐磨钢的显微组织、力学性能和耐磨性能的影响。结果表明,NM500钢经淬火+回火处理后得到典型的回火马氏体组织,回火温度的升高使得固溶在马氏体板条中的过饱和碳原子逐渐析出,而碳化物聚集长大导致钢的硬度和低温冲击性能明显下降。NM500钢在200 ℃回火后的硬度和-20 ℃低温冲击吸收能量分别为513 HBW和44.40 J,耐磨性能最佳。低温回火(200、250 ℃)时少量细小弥散的过饱和碳原子析出改善了钢的耐磨性,300 ℃及以上回火时聚集粗化的短棒状渗碳体会降低基体的硬度,导致钢的耐磨性不断降低,磨损机制由磨粒磨损向粘着磨损转变。  相似文献   

7.
35CrMo钢亚温淬火强韧化组织与性能研究   总被引:2,自引:0,他引:2  
选用常规热处理、调质处理加亚温热处理两种工艺对35CrMo钢进行强韧化.结果表明:35CrMo钢经850℃淬火后获得马氏体组织,其硬度值较高,通过600℃回火后测其ak为117 J/cm2,σs为560 MPa,σb为765 MPa,硬度为32HRC,ψ=75%;35CrMo钢经850℃淬火+600℃回火+790℃淬火,其显微组织为铁素体+马氏体+弥散分布的细小残余奥氏体,硬度较高,再经600℃回火后组织为回火索氏体+铁素体,其ak为123 J/cm2,σs达到550 MPa、σb为755MPa,ψ达到76%,硬度为30 HRC.35CrMo钢经850℃淬火+600℃回火+790℃淬火+600℃回火工艺处理后.材料的强度和韧性具有良好的配合.  相似文献   

8.
采用OM、SEM、TEM和力学性能测试等手段,研究了不同淬回火工艺对微Nb高Mo型H13钢的组织及性能的影响。结果表明:微量Nb的加入能改善钢的室温冲击性能。试验钢经淬、回火处理后的组织均为回火马氏体和少量残留奥氏体及未溶碳化物。试验钢在1030~1060℃淬火并在600~630℃的较高温度回火后,有优良的强韧性配合,此时含微量Nb的NM2钢综合力学性能最好,当淬火温度超过1090℃时试验钢的硬度急剧提高,从而恶化钢的综合力学性能。试验钢在550~570℃范围内回火时出现了明显的二次硬化,主要是由于在该温度范围内渗碳体溶解加速,同时钢中的特殊碳化物M_23)C_6、M_6C和MC等析出量增加,所以选择回火温度时尽量避开此温度范围。  相似文献   

9.
采用光学显微镜、扫描电镜、透射电镜和万能拉伸试验机等研究了含Nb和无Nb两种成分低合金海工钢经控轧控冷(TMCP)及回火工艺处理后的组织与性能,研究了回火工艺对Nb微合金化效果的影响。结果表明:经TMCP工艺和回火工艺处理后,含Nb钢平均屈服强度分别为448 MPa和491 MPa,-40℃冲击吸收能量分别为272 J和289 J,而无Nb钢平均屈服强度分别为379 MPa和470 MPa,-40℃冲击吸收能量分别为118 J和300 J。回火后,无Nb钢屈服强度提高了91 MPa,而冲击韧性更是提高了1.5倍,与含Nb钢强度和韧性的差距均得到明显缩小。因此,回火工艺对无Nb钢强韧性的提高效果更明显,而对含Nb钢强韧性的提高较小。  相似文献   

10.
设计了一种低碳CuNiCrMnMo钢,并研究了3种热处理工艺(油淬+回火、水淬+回火和轧后直接淬火回火)条件下试验钢的组织与性能.试验钢经油淬和600 ℃回火1 h,屈服强度Rp0.2=645 MPa,抗拉强度Rm=745 MPa,-60 ℃冲击吸收能量为138 J;经水淬和650 ℃回火1 h,屈服强度Rp0.2= 668 MPa,抗拉强度Rm=721 MPa,-80 ℃下冲击吸收能量为216 J.经直接淬火和650 ℃回火1 h,达到最佳的强韧性匹配,即屈服强度Rp0.2=700 MPa,抗拉强度Rm=764 MPa,-80 ℃下冲击吸收能量为182 J.  相似文献   

11.
采用OM、SEM、EDS、相分析、硬度测试和冲击性能试验等分析手段,对比研究Nb含量为0、0.067%和0.270%(质量分数)的H13试验钢淬回火后的组织及力学性能。结果表明,加入Nb后试验钢淬火硬度有所下降;淬火温度提高后,含Nb试验钢的晶粒尺寸小于0Nb试验钢,但含Nb试验钢中存在部分未溶碳化物;3种试验钢回火后的二次硬化峰均出现在510 ℃。经1050 ℃淬火、不同温度回火后,0.067Nb试验钢的冲击吸收能量高于0Nb试验钢。0.27Nb试验钢受到大尺寸碳化物的影响,淬火温度在1080 ℃以下时,冲击吸收能量不及另两种试验钢。  相似文献   

12.
对不同C含量和热处理工艺处理的中锰耐磨钢的显微组织和力学性能进行了研究。结果表明,C含量增加,中锰耐磨钢的硬度增大,冲击韧度减小。经850℃淬火+400℃回火的中锰耐磨钢冲击韧度很差,冲击功最高仅为8.3 J;采用850℃淬火+600℃回火的钢冲击功达到19.8 J,洛氏硬度偏低,最高为35.42 HRC;经850℃淬火+200℃回火的钢冲击功为14.3 J,洛氏硬度达到49.78 HRC,综合力学性能最好。  相似文献   

13.
采用液-固复合的方法制备铸态复合耐磨试验钢,且分别进行等温淬火和淬火-回火处理,利用扫描电镜、硬度计及冲击性能测试研究了不同的热处理对高铬高碳钢/碳钢复合铸造耐磨钢组织和性能的影响。利用JMatPro软件对试验钢不同温度下平衡相种类与含量进行了计算。结果表明,铸态高铬高碳钢/碳钢复合材料耐磨层的微观组织由网状碳化物和粒状珠光体组成;基体层为由粗大的奥氏体在较快冷速下形成的魏氏组织。等温淬火后试验钢耐磨层形成了网状碳化物+细粒状碳化物+奥氏体+铁素体的微观组织,基体层形成了块状铁素体与珠光体的微观组织;淬火-回火后试验钢耐磨层形成了网状碳化物+细粒状碳化物+马氏体的微观组织,基体层形成马氏体+上贝氏体的微观组织。经过等温淬火的试验钢耐磨层硬度为493 HBW,冲击吸收能量为2.6 J,基体层冲击吸收能量为79.2 J;经过淬火-回火的耐磨层硬度为629 HBW,冲击吸收能量为1.6 J,基体层的冲击吸收能量为20.0 J。考虑复合耐磨钢需要抵抗较高冲击载荷,880 ℃保温2 h空冷至320 ℃保温5.5 h的等温淬火为更优的热处理工艺。  相似文献   

14.
徐文芳  张朋彦  杨鹏 《金属热处理》2020,45(11):187-191
对在线淬火型微合金高强结构钢在400~600 ℃范围内进行回火40 min处理,以研究不同回火温度对试验钢显微组织和力学性能的影响。通过光学显微镜、扫描电镜等进行组织观察分析,同时测量试验钢回火后的强度、硬度及-40 ℃冲击吸收能量等进行力学性能分析。试验结果表明:随着回火温度的升高,试验钢强度及硬度整体呈下降趋势,冲击性能整体上升,并在450~500 ℃出现回火脆性区。同时随着回火温度升高,试验钢组织中马氏体逐渐宽化减少,铁素体含量增多。450 ℃回火时,试验钢的组织为回火托氏体,此时其屈服强度和硬度分别为840 MPa和304 HV3,断后伸长率为14.4%,-40 ℃冲击吸收能量为129 J,达到良好综合力学性能。  相似文献   

15.
通过扫描电镜观察、拉伸及低温冲击试验,研究了不同淬火工艺对含1%(质量分数)Ni的中锰钢组织和性能的影响。结果表明,随着淬火温度升高,试验钢的屈服强度和抗拉强度先增大后减小,随后再逐渐增大,低温冲击吸收能量具有相同变化趋势;中锰钢的最优调质工艺为900 ℃淬火后于600 ℃回火,其屈服强度、抗拉强度及伸长率分别能达到560 MPa、640 MPa及21.8%,-50 ℃ 冲击吸收能量达到270 J,获得了良好的综合力学性能。调质态试验钢在不同淬火温度下均获得了铁素体和回火马氏体组织,随着淬火温度升高,马氏体比例增加,晶粒尺寸逐渐减小。  相似文献   

16.
张蒙  吴光亮 《金属热处理》2023,(10):157-162
对NM500耐磨钢进行940℃淬火+两相区淬火+回火(QLT)热处理,研究了两相区淬火温度(820~880℃)和回火温度(200~600℃)对试验钢显微组织和力学性能的影响。结果表明,在两相区淬火温度从820℃升至880℃的过程中,试验钢为马氏体和铁素体双相组织,且铁素体含量逐渐降低,马氏体含量增多,试验钢的强度和硬度提高,-40℃冲击吸收能量从67 J降低至33 J。在870℃两相区淬火,200~600℃范围内回火时,随回火温度的升高,板条马氏体和残留奥氏体逐渐分解,碳化物形态和分布发生变化;试验钢抗拉强度和硬度逐渐降低,低温冲击性能先降低后升高,试验钢达到良好强韧性匹配的回火温度区间为200~250℃。  相似文献   

17.
30CrMnSiA钢样品经890℃油冷淬火处理后,分别在450-590℃进行回火处理。通过光学显微镜(OM)、扫描电镜(SEM)以及力学试验机等手段,研究了热处理后30CrMnSiA钢的显微组织以及力学性能。结果表明:随着回火温度的升高,30CrMnSiA钢组织中的回火索氏体占比不断提高,合金强度下降,伸长率增加。经890℃淬火+500℃回火处理后低合金钢的综合性能较佳,硬度、抗拉强度、屈服强度、伸长率和冲击韧度分别为39 HRC、1302 MPa、1147 MPa、11. 3%和28 J/cm~2。30CrMnSiA钢在530~550℃左右会发生回火脆性。回火温度继续升高,冲击韧度得以恢复。回火温度为590℃时,冲击韧度达到41. 25 J/cm~2,而抗拉强度和屈服强度分别为1126 MPa和1027 MPa。  相似文献   

18.
研究了亚温淬火工艺和原始组织对一种新型射孔枪管用钢组织和性能的影响。结果表明,随亚温淬火温度升高,试验钢的晶粒增大,硬度呈先增大后降低的趋势;随回火温度升高,钢的硬度和强度逐渐降低,断面收缩率和冲击吸收能量逐渐增大;经分析最佳热处理工艺为840 ℃亚温淬火+560 ℃回火,以此工艺下处理后调质态试验钢的综合力学性能最优。  相似文献   

19.
借助DIL805A/D淬火变形膨胀仪,通过金相、透射电镜、室温拉伸、-40 ℃冲击测试等分析手段,研究了热处理工艺对960 MPa级高强钢组织与性能的影响。结果表明:在790~880 ℃温度范围内,试验钢随着淬火加热温度的提高,马氏体量逐渐增加,铁素体量逐渐减少,在850 ℃淬火,铁素体含量基本为零,组织最为均匀细小。随着回火温度从180 ℃提高到450 ℃,马氏体的板条逐渐分解,板条状的渗碳体开始聚集和球化。淬火加热温度高于850 ℃时,材料的屈服强度大于960 MPa;在450 ℃回火,材料具有更佳的冲击韧性。对本试验钢而言,采用850 ℃淬火+450 ℃回火,具有最佳的强韧性匹配。  相似文献   

20.
研究了不同热处理工艺对含Nb低温钢组织和性能的影响。结果表明,铸态组织为细片状珠光体+块状铁素体,热处理后均为回火索氏体。3种热处理工艺中淬火+调质工艺的性能最优、正火+调质的略有降低,退火+调质的最差。含Nb低温钢淬火+调质处理后-20℃、-40℃夏比冲击功AKV分别达到45.7 J和29.9 J,抗拉强度、屈服强度和断后伸长率分别为1010 MPa、910 MPa和19.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号