首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
刘家涛  孙世能  戴山  张野 《热处理》2024,(1):25-27+31
TA15钛合金产品通常都要进行退火处理。为揭示退火温度对其显微组织和力学性能的影响,对?350 mm的TA15钛合金试棒分别进行了在760℃、800℃和840℃保温2 h空冷至室温的退火。随后采用扫描电镜和电子万能拉伸试验机检测了试棒的显微组织、室温和高温拉伸性能以及拉伸断口的形貌。结果表明:随着退火温度的升高,β相转变的组织增多,细小的α相充分球化且杂乱分布;随着退火温度的升高,合金的室温抗拉强度升高,室温屈服强度先升高后略微降低,断后伸长率降低,而高温抗拉强度和屈服强度均升高,塑性变化不大,拉伸断口的韧窝变大变浅,以韧性断裂为主。  相似文献   

2.
通过拉伸试验,对经过β相区两镦两拔锻造的TA10钛合金棒材不同温度(600~750 ℃)退火后的力学性能和显微组织进行研究。结果表明:随着退火温度的升高,TA10钛合金的屈服强度和抗拉强度下降,伸长率和断面收缩率升高;显微组织由网篮组织逐渐破碎,相同取向的片状α组织随温度升高偏聚在一起,形成长而平直的集束,为魏氏组织;热处理温度为700 ℃时棒材的屈服强度为607 MPa,抗拉强度为687 MPa,伸长率为22%,强度和塑性达到较好的匹配。  相似文献   

3.
采用光学显微镜、电子探针和拉伸实验研究单重退火处理对BTi-6431S合金显微组织和力学性能的影响。结果表明:随退火温度的升高,合金中的初生α相粗化,趋于等轴状,体积分数逐渐降低;β相和次生α相的体积分数增加。随退火温度的升高,合金的室温强度先升高后降低,高温强度则逐渐升高;但是室温和高温塑性均不断下降。经过980℃退火处理后,BTi-6431S合金获得良好的高温强度和室温塑性匹配,此时合金650℃的抗拉强度达到600 MPa以上,室温伸长率超过8%。  相似文献   

4.
为提高冷拔后的高碳钢丝的屈服强度,对其进行了不同温度的低温退火处理,采用SEM观察了退火后钢丝的显微组织,并进行了拉伸性能测试。结果表明:退火温度为100~140℃时钢丝的抗拉强度随着温度升高而逐渐上升,在140℃达到最大值3847 MPa,之后逐渐降低;屈服强度在100~180℃退火时随着温度升高而逐渐上升,在180℃达到最大值3784 MPa,之后逐渐降低;钢丝伸长率在退火之后剧烈下降,当退火温度高于160℃之后,伸长率开始趋于稳定。由显微组织观察结果发现,随着退火温度上升,钢丝中逐渐析出第二相的渗碳体颗粒,在180℃屈服强度达到最大值后,随着温度继续上升,渗碳体颗粒发生减少、粗化现象,强度开始剧烈下降。  相似文献   

5.
《铸造技术》2016,(12):2557-2562
采用铝热熔化法制备了纳米晶/微米晶复相316L不锈钢,研究了铸态和600~1 000℃退火态下钢的组织和力学性能特征。结果表明:随退火温度升高,纳米晶和微米晶的平均晶粒尺寸逐渐增大,微米晶的体积分数逐渐提高。1 000℃退火后组织中出现了FeNiCrAl金属间化合物相。600℃退火后抗拉强度最大,约574 MPa,伸长率为6.5%。800℃退火后,拉伸屈服强度和抗拉强度分别降至240 MPa和515 MPa,伸长率升高至18.2%。1 000℃退火后拉伸屈服强度和抗拉强度进一步降低,但塑性提高,伸长率达到41.2%。  相似文献   

6.
利用高速线材轧机制备Ti-6Al-4V合金小规格棒材(d10 mm),研究固溶与时效热处理工艺对棒材显微组织与力学性能的影响。结果表明:棒材组织主要由α相和β相组成,随着固溶温度从900℃升高到990℃,棒材中α相含量减少而β相含量逐渐增多,显微组织出现了由初生等轴α相向针状β相转变进而向全片层状β转变的过程,棒材拉伸强度逐渐升高,而伸长率明显降低;棒材在930℃固溶后进行时效处理,随着时效温度从450℃升高到650℃,β相转变组织分解析出α相,组织主要由(α+β)相和β相混合组成,α相不断集聚长大,使组织粗大,棒材抗拉强度降低,伸长率升高;经(930℃,30 min,水淬)+(550℃,4 h,空冷)热处理后,棒材强度和塑性达到最佳配合,抗拉强度为1031 MPa,伸长率为12.5%。  相似文献   

7.
研究了退火温度、保温时间、退火方式及冷却方式等热处理制度对TC4薄板室温力学性能和显微组织的影响。结果表明,在单片式退火方式下,温度从720℃升高到820℃时,板材的抗拉强度和屈服强度先降低后升高,但其伸长率先升高后降低,退火温度为780~800℃时板材的强度和塑性得到了良好的匹配;当保温时间从30 min延长到120 min时,板材的抗拉强度变化不明显,屈服强度显著下降,但保温时间超过60 min后屈服强度趋于定值。随退火温度的升高和保温时间的延长,初生α和β转变组织的晶粒尺寸都增大,且β转变组织的比例增大。采用真空垛式退火+炉冷方式,退火温度为780℃、保温时间为7 h时板材可获得良好的综合力学性能。  相似文献   

8.
对TA10钛合金进行了双重退火,即分别在840℃、860℃、880℃和900℃保温1h空冷,随后在560℃保温4 h空冷。退火后采用光学显微镜、扫描电子显微镜及拉伸试验机检测了合金的显微组织、拉伸性能和拉伸断口形貌。结果表明:当首次退火温度在两相区时,合金的微观组织由初生α相和β转变组织构成,且随着首次退火温度的升高,初生α相数量减少,β转变组织增多,次生α相体积明显增大;当首次退火温度在单相区时,合金中初生α相完全消失,组织以粗大β晶粒为主,晶界有明显的α相;随着首次退火温度的升高,合金的强度升高,塑性降低;当首次退火温度在两相区时,拉伸断口有大量等轴状韧窝,首次退火温度升高至单相区后,拉伸断口呈岩石状,并有明显的撕裂棱。  相似文献   

9.
对锻压TA15钛合金试样进行700~820℃的退火处理,保温2 h后空冷,研究热处理工艺对锻压TA15钛合金的力学性能的影响。通过观察热处理后锻压TA15钛合金的显微组织变化,统计初生α相的相对体积分数。结果发现,在700~820℃退火处理后,锻压TA15钛合金的显微组织中主要存在初生α相和次生α相,以及较少的基体β相;随着退火温度的升高,初生α相的含量逐渐减少,相对体积分数由70.35%降至46.42%,次生α相的相对体积分数由3.84%升高至18.26%。对比不同热处理温度下试样在室温和高温(500℃)条件下的拉伸性能,820℃退火处理后的试样在室温时的抗拉强度为986 MPa,伸长率为13.5%,强度和塑性具有较好的性能匹配。  相似文献   

10.
研究了厚度为4 mm的Ti-2.5A1-2Zr-1Fe合金板材经500~1000℃电阻炉热处理后的力学性能、显微组织和N、H、O化学元素含量的变化。结果表明:合金再结晶温度约为800℃,显微组织从拉长α+等轴α+点状晶间β向等轴α+点状β转变;力学性能变化和显微组织变化相吻合,热处理温度小于800℃时随着热处理温度的升高,屈服强度和抗拉强度缓慢下降。温度大于800℃后,屈服强度和抗拉强度变得复杂,二者变化趋势也不相同,屈服强度对热处理温度更为敏感;未发生相变之前,板材伸长率和最小弯曲直径未发生明显变化,相变后性能均迅速下降;不同热处理温度下保温30 min,N、H、O成分未发生明显变化。  相似文献   

11.
通过拉伸试验,对经过β相区两镦两拔锻造的TA10钛合金棒材不同温度(600~750℃)退火后的力学性能和显微组织进行研究。结果表明:随着退火温度的升高,TA10钛合金的规定塑性延伸强度和抗拉强度下降,伸长率和断面收缩率升高;显微组织由网篮组织逐渐破碎,相同取向的片状α组织随温度升高偏聚在一起,形成长而平直的集束,为魏氏组织;热处理温度为700℃时棒材的规定塑性延伸强度为607 MPa,抗拉强度为687 MPa,伸长率为22%,强度和塑性达到较好的匹配。  相似文献   

12.
在工业试生产600 MPa热镀锌双相钢时,分析不同退火温度(800、820、840℃)对成品组织性能的影响,并对退火温度和成分进行优化。结果表明:成品主要组织均为铁素体+马氏体(面积分数8%~12%),退火温度升高马氏体含量下降,晶粒尺寸逐渐增大,840℃退火出现少量珠光体。成品力学性能符合标准要求,强度偏高,随温度升高屈服、抗拉强度下降,伸长率、屈强比变化不明显。对成分C,Mn元素微调,采用800~810℃退火,成功稳定批量生产600 MPa级双相钢,性能均值为:屈服强度360 MPa、抗拉强度630 MPa、伸长率26%、屈强比0.57。  相似文献   

13.
采用X射线衍射仪、光学显微镜、扫描电镜、硬度测试和拉伸试验等方法研究退火处理对TiZrAlV合金的显微组织和力学性能的影响。结果表明:锻造态TiZrAlV合金由α相、β相以及少量fcc相组成;退火处理后,合金发生α+β+fcc→α+β的相变过程,并且β相含量随退火温度升高而增加;TiZrAlV合金锻造态和退火态的微观组织特点为典型的网篮组织,并且随着退火温度的升高,α相片层的厚度逐渐增大;锻造态TiZrAlV合金的屈服强度、最大抗拉强度、伸长率以及硬度分别为833、955 MPa、13.08%以及36.5 HRC;退火处理后合金的屈服强度得到提升,400℃退火的屈服强度为982 MPa,抗拉强度为1136 MPa,而伸长率和硬度变化不大;退火处理后合金的拉伸断口由大量大小不等的韧窝组成,呈现塑性断裂特征。  相似文献   

14.
 本文以Nb微合金化冷轧HSLA钢为研究对象,探讨了退火和平整工艺对钢板组织性能的影响,结果表明:退火温度从700℃升至840℃,钢板的强度逐渐降低,伸长率逐渐升高,纤维状组织逐渐减少,铁素体再结晶更加充分;预拉伸量对带钢抗拉强度和断后伸长率无明显影响,随着预拉伸量提高至2. 0%,屈服强度略有升高,屈服点伸长率Ae逐渐减小,但预拉伸量达到2. 0%时,屈服平台仍无法消除;平整压下率对带钢抗拉强度和断后伸长率无明显影响,当压下率达到1. 0%时,屈服平台可完全消除,屈服平台消除后,随着压下率提高,规定塑性延伸强度Rp0. 2缓慢升高。   相似文献   

15.
研究了退火处理对选区激光熔化技术(SLM)制备的TC4钛合金的力学性能及显微组织影响。结果表明,选区激光熔化成形的TC4合金试样主要由针状α′相组成,随着退火温度升高,逐渐分解成α+β相,且由魏氏组织向网篮组织转化,伸长率逐渐增大,屈服强度下降,拉伸断口呈韧性断裂特征。综合比较,800℃×90 min退火处理后合金具有较好的力学性能,抗拉强度为902.43 MPa,伸长率为2.38%。  相似文献   

16.
采用光学显微镜、拉伸实验机及显微硬度计研究了热处理对BTi-6431S合金激光焊焊接接头组织与性能的影响。结果表明,BTi-6431S合金激光焊原始焊接组织为块状初生α相和片层状β相转变组织组成,经不同温度热处理获得不同形态α相。随着热处理温度的升高,次生α相的体积分数增加;焊接接头室温与高温抗拉强度和屈服强度逐渐升高,伸长率呈现先升高后降低的变化趋势。经650℃热处理后,BTi-6431S合金激光焊接接头室温显微硬度最高。  相似文献   

17.
采用双辊轧机对热挤压态LZ91镁锂进行冷轧试验,利用OM、SEM、XRD分析了退火处理对LZ91镁锂合金冷轧板材显微组织的影响,并用维氏硬度计和拉伸试验机测试其力学性能。结果表明,200℃×1 h退火后α相发生球化反应,β相再结晶完成,此时合金的综合性能最佳;随着退火温度的升高,α相和β相都相继长大;合金的抗拉强度和维氏硬度随着退火温度的升高而逐渐降低,伸长率则先升高后降低;当退火温度高于250℃时,由于α相和β相同时长大,合金的屈服强度急剧降低。  相似文献   

18.
研究热处理参数对Ti-5Al-2Sn-2Zr-4Mo-4Cr合金显微组织的影响及其等轴组织、双态组织和魏氏组织的室温拉伸力学性能和拉伸断口形貌。获得3种典型显微组织的热处理温度分别为830、890和920°C,并保温30 min后炉冷。炉冷时,初生α相体积分数随热处理温度的升高而减小,在热处理温度为830、890和920°C时,初生α相的体积分数分别为45.8%、15.5%和0;空冷时,初生α相体积分数的变化规律类似。升高热处理温度和炉冷均有利于次生α相的析出和长大。等轴组织具有良好的综合拉伸性能,其抗拉强度、屈服强度、伸长率及断面收缩率分别为1035 MPa、1011 MPa、20.8%和58.7%;双态组织的屈服强度和伸长率略低于等轴组织的屈服强度和伸长率;魏氏组织的韧性差、屈服强度低,但抗拉强度高达1078 MPa。等轴组织和双态组织的室温拉伸断口呈韧窝断裂,塑性较好;魏氏组织的室温拉伸断口中韧窝断裂和晶间断裂共存,塑性较差。  相似文献   

19.
在实验室利用Multipas多功能连续退火模拟器,对低碳冷轧TRIP钢进行了研究,探讨了退火温度与贝氏体等温温度对600 MPa冷轧TRIP钢组织与力学性能的影响规律。结果显示:当贝氏体等温温度相同时,随着退火温度的升高,组织中铁素体与贝氏体块尺寸减小,且贝氏体转变的鼻尖温度向较高温度移动。780 ℃退火时,随着等温温度的升高,屈服强度、伸长率与屈强比呈现下降趋势,而抗拉强度呈上升趋势;800 ℃与820 ℃退火时,随着等温温度的升高,屈服强度、伸长率与屈强比先上升后下降,而抗拉强度先下降后上升。在相同贝氏体区等温温度下,780 ℃退火时的屈服强度与屈强比最小,而抗拉强度最高;800 ℃退火时的强塑积与综合力学性能最好。  相似文献   

20.
采用扫描电镜、准原位电子背散射衍射(EBSD)、X射线衍射和室温拉伸实验,研究了冷轧Fe20Mn0.3C钢在700~1000℃范围内退火1 h后的微观组织及其拉伸变形行为。结果表明,随着退火温度升高材料的屈服强度逐渐降低,而抗拉强度及伸长率则先升高后降低,当退火温度为800℃时,抗拉强度和伸长率达到峰值。800℃退火试样形成了均匀细小且非常稳定的奥氏体晶粒组织,其拉伸变形机制主要为孪生诱导塑性(TWIP效应);当退火温度进一步升高,奥氏体晶粒长大,其稳定性降低,空冷及拉伸过程中均发生马氏体相变,形变机理由TWIP效应转为相变诱导塑性(TRIP效应)。准原位拉伸EBSD研究表明:在拉伸变形过程中,退火试样中的淬火ε马氏体一方面通过γ→ε形式的TRIP效应增厚,另一方面通过ε→α'形式的TRIP效应转变成α'马氏体,而裂纹容易在α'马氏体界面形核扩展,因此,淬火ε马氏体越多,材料的伸长率越低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号