首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Despite the apparent involvement of gastrointestinal mast cells in hypersensitivity reactions in the mucosa, remarkably little information is available concerning the characteristics of these cells from man and higher animals. To study the characteristics of gastrointestinal mast cells from nonhuman primates, a previously described technique which uses a combination of mechanical and enzymatic methods to obtain mast cells from the tissues of rodents required modification to permit the successful dispersion of normal gastrointestinal tissues of higher animals. This modified procedure, as described in this report, appears to be relatively selective for mast cells located in the mucosal site, and typically yields ca 9 X 10(5) mast cells per gram of tissue. The mucosal mast cells obtained comprised ca 2% of the total nucleated cells, contained approximately 1 pg of histamine per cell, and stained metachromatically with toluidine blue only at low pH. The cells exhibited a dose-dependent release of histamine on challenge with goat anti-human IgE or the ionophores A23187 and Br-x537A but were refractory to the action of compound 48/80. IgE-mediated histamine release from monkey intestinal mast cells differed from that observed from rat intestinal mast cells in that release was inhibited not only by quercetin but also by theophylline. Disodium cromoglycate gave variable results. The data indicate that viable nonhuman primate mucosal mast cells can be obtained for study, and that these cells, although sharing some characteristics of mucosal mast cells from lower species, have distinct and unique properties. The availability of this nonhuman primate model for the study of mast cell function in higher animals should contribute to the understanding of mast cell-mediated diseases in man.  相似文献   

2.
5'-N-ethylcarboxamideadenosine (NECA) greater than 2-chloroadenosine greater than adenosine greater than N6-(R-phenyl-isopropyl)-adenosine (R-PIA) inhibited in vitro anti-IgE-induced histamine and peptide leukotriene C4 (LTC4) release from human basophils in a concentration-dependent fashion. Micromolar concentrations of adenosine, NECA and R-PIA potentiated the anti-IgE-stimulated release of histamine and LTC4 from human lung parenchymal mast cells. Submillimolar concentrations of adenosine, NECA and R-PIA inhibited in a concentration dependent manner the release of histamine and prostaglandin D2 (PGD2) from skin mast cells challenged with anti-IgE. These results demonstrate marked heterogeneity of the modulatory effect exerted by adenosine on mediator release from human basophils and mast cells.  相似文献   

3.
The complement-derived anaphylatoxin peptides, C3a and C5a, have long been considered to manifest their spasmogenic activities primarily through stimulation of mast cells. Although mast cells represent the major non-circulating repository for histamine, these cells also elaborate a number of additional, highly potent spasmogenic mediators derived from arachidonic acid. The same lipid mediators can be released by many other cell types. As a result, evaluation of the role of mast cells in anaphylatoxin-dependent responses cannot be based exclusively upon an analysis of the mediators released. We evaluated the role of mast cells in anaphylatoxin-induced ileal smooth muscle contractions by testing isolated segments of ileal tissues derived from genetically mast cell-deficient mice and their congenic normal (+/+) littermates. Isolated tissues from either congenic normal (+/+) or mast cell-deficient Sl/Sld mice responded similarly to acetylcholine, histamine, serotonin, prostaglandin E2, and the thromboxane A2 analog, U-46619. At 1 microgram/ml, histamine induced contractions of greater magnitude in tissues from mast cell-deficient animals; however, this mediator also desensitized the tissues to repeat challenge with histamine at the same concentration. C5a at 1 nM resulted in contractions equivalent to approximately 50% of the maximal KCl response; normal and mast cell-deficient tissues responded in a similar manner. C5a also released histamine from the normal mouse ileum, in addition to causing contraction of the tissues. C3a at 200 nM also produced similar contractile responses in both +/+ and S1/S1d tissues. These studies show that the anaphylatoxin peptides C3a and C5a are capable of contracting smooth muscle-containing tissues by a mechanism completely independent of mast cells. In addition, we also demonstrated that mast cell degranulation does not necessarily provoke ileal contraction. Thus compound 48/80, a mast cell degranulating agent unrelated to the anaphylatoxins, did not induce contractions in ileal tissues, even when used at concentrations as high as 100 micrograms/ml. Compound 48/80 did release histamine from the +/+ ileum, however, indicating that the agent was able to cause degranulation of ileal mast cells. Taken together, these data indicate that spasmogenic responses to anaphylatoxins (and possibly other agents) that are associated with mast cell degranulation need not necessarily require mast cell mediator release for their expression.  相似文献   

4.
The mechanism of mediator secretion from mast cells in disease is likely to include modulation of ion channel activity. Several distinct Ca(2+), K(+), and Cl(-) conductances have been identified in rodent mast cells, but there are no data on human mast cells. We have used the whole-cell variant of the patch clamp technique to characterize for the first time macroscopic ion currents in purified human lung mast cells and human peripheral blood-derived mast cells at rest and following IgE-dependent activation. The majority of both mast cell types were electrically silent at rest with a resting membrane potential of around 0 mV. Following IgE-dependent activation, >90% of human peripheral blood-derived mast cells responded within 2 min with the development of a Ca(2+)-activated K(+) current exhibiting weak inward rectification, which polarized the cells to around -40 mV and a smaller outwardly rectifying Ca(2+)-independent Cl(-) conductance. Human lung mast cells showed more heterogeneity in their response to anti-IgE, with Ca(2+)-activated K(+) currents and Ca(2+)-independent Cl(-) currents developing in approximately 50% of cells. In both cell types, the K(+) current was blocked reversibly by charybdotoxin, which along with its electrophysiological properties suggests it is carried by a channel similar to the intermediate conductance Ca(2+)-activated K(+) channel. Charybdotoxin did not consistently attenuate histamine or leukotriene C(4) release, indicating that the Ca(2+)-activated K(+) current may enhance, but is not essential for, the release of these mediators.  相似文献   

5.
Digestion of human foreskin with collagenase and hyaluronidase disperses approximately 3.4 X 10(7) nucleated cells per gram of tissue, of which mast cells constitute 4.7%. These may be purified to 80% by use of density gradient centrifugation. The majority of mast cells (79%) measured between 9 and 13 micron in diameter, and the mean histamine content was 4.6 pg/cell. Viability was demonstrated by trypan blue exclusion by 93% of the cells and the low spontaneous histamine secretion of less than 7% in functional studies. Anti-IgE released up to 17.5% of cell-associated histamine within 5 to 7 min. Calcium ionophore-induced release was optimal with 0.3 microM A23187 when 28.6% histamine was released. Unlike human lung mast cells, skin mast cells released histamine in response to compound 48/80 and poly-L-lysine. This release, which was complete within 20 sec, was totally dependent on intact glycolysis and oxidative phosphorylation and partially dependent on extracellular calcium. The same characteristics were observed with secretion induced by substance P and morphine. The weak activity of eledoisin and physalaemin suggests that the substance P receptor, like that of the rat mast cell, is not of the classical types described for smooth muscle. Morphine-induced secretion was partially blocked by naloxone in a manner not compatible with competitive antagonism at a classical opioid receptor. The sensitivity of skin mast cells to nonimmunologic stimulation clearly distinguishes them from mast cells of the lung and lymphoid tissues and provides evidence of functional heterogeneity within human mast cells.  相似文献   

6.
7.
Using a high performance liquid chromatography assay that detects the cleavage of the C-terminal leucine from angiotensin I, we have identified a carboxypeptidase activity in mast cells from human lung and in dispersed mast cell preparations from human skin. The enzyme activity was detected in a preparation of dispersed human mast cells from lung of greater than 99% purity and was released with histamine after stimulation with goat anti-human IgE. In nine preparations of dispersed human mast cells from lung of 10 to 99% purity, net percentage of release of carboxypeptidase correlated with the release of histamine, localizing carboxypeptidase to mast cell secretory granules. The enzyme activity was also detected in preparations of dispersed human mast cells from skin and in extracts of whole skin. The inhibitor profile and m.w. of carboxypeptidase activity from preparations of dispersed mast cells from skin was similar to that from dispersed mast cells from lung. Mast cell carboxypeptidase had a m.w. on gel filtration of 30,000 to 35,000. The enzyme in crude lysates of dispersed mast cell preparations had optimal activity between pH 8.5 and 9.5 and was inhibited by potato inhibitor, which distinguished it from carboxypeptidase in cultured human foreskin keratinocytes and adult fibroblasts, and from other proteolytic mast cell enzymes. The enzyme activity was also inhibited by EDTA, o-phenanthroline, and, to a small extent, by 8-OH quinoline, but not by Captopril, soybean trypsin inhibitor, or pepstatin. These findings demonstrate that human mast cell secretory granules contain carboxypeptidase in addition to tryptase and chymase. It appears that mast cells from skin may have a higher content of carboxypeptidase than do mast cells from lung.  相似文献   

8.
Adenosine has been implicated to play a role in asthma in part through its ability to influence mediator release from mast cells. Most physiological roles of adenosine are mediated through adenosine receptors; however, the mechanisms by which adenosine influences mediator release from lung mast cells are not understood. We established primary murine lung mast cell cultures and used real-time RT-PCR and immunofluorescence to demonstrate that the A(2A), A(2B), and A(3) adenosine receptors are expressed on murine lung mast cells. Studies using selective adenosine receptor agonists and antagonists suggested that activation of A(3) receptors could induce mast cell histamine release in association with increases in intracellular Ca(2+) that were mediated through G(i) and phosphoinositide 3-kinase signaling pathways. The function of A(3) receptors in vivo was tested by exposing mice to the A(3) receptor agonist, IB-MECA. Nebulized IB-MECA directly induced lung mast cell degranulation in wild-type mice while having no effect in A(3) receptor knockout mice. Furthermore, studies using adenosine deaminase knockout mice suggested that elevated endogenous adenosine induced lung mast cell degranulation by engaging A(3) receptors. These results demonstrate that the A(3) adenosine receptor plays an important role in adenosine-mediated murine lung mast cell degranulation.  相似文献   

9.
Histamine release in acute anaphylactic enteropathy of the rat   总被引:1,自引:0,他引:1  
Investigations into the role of allergic enteropathy in acute and chronic intestinal inflammation have been hampered by the lack of objective confirmation for intestinal mast cell activation. Utilizing an established model of acute allergic enteropathy in the rat, we report the enhanced intraluminal recovery of the mast cell mediator histamine after in vivo antigen challenge in sensitized animals. The enhanced histamine recovery is dose dependent, antigen-specific, and restricted to that segment of bowel challenged, thus confirming local intestinal anaphylaxis. The progression of histologic enteropathy is documented and shown to correlate with the entry of mast cells into the intestinal lumen during, but not before, the anaphylactic response. Pretreatment of the sensitized animal with prostaglandin E2 or doxantrazole, but not cromolyn, significantly inhibits the anaphylactic response.  相似文献   

10.
With the use of a collagenase dispersion technique, cells were isolated from the lamina propria of the human small and large intestine. The cell suspensions contained 8% mast cells, which on average contained 1 to 2 pg of histamine/cell. With the use of histochemical procedures based upon fixative sensitivity and dye binding, which identify functionally distinct mast cell subtypes in the rat, dispersed human intestinal mast cells contained approximately equal proportions of two histochemical subtypes analogous to those in the rat. Whether these are functionally distinct as in the rat remains to be determined. The histochemically mixed mast cell populations from the human intestinal mucosa secreted histamine in a dose- and energy-dependent manner in response to anti-IgE and A23187, but not 48/80. Theophylline, doxantrazole, quercetin, and salbutamol all significantly inhibited anti-IgE-induced histamine secretion by human intestinal mast cells, but cromolyn sodium and the experimental antisecretory drugs, nedocromil sodium and FPL 52694, did not inhibit histamine secretion by the mast cell mixture to a statistically significant extent. Cromolyn sodium inhibited histamine secretion by 15 to 30%, and whether this reflected inhibition of one of the two histochemical mast cell subtypes to a greater extent than the other or all the cells to a minimal degree remains to be established. Control investigations of the intestinal cell isolation procedure indicated that these qualities did not reflect effects of the cell dispersal procedure. Further characterization and analysis of intestinal mast cells is essential to determine if functionally distinct mast cell subtypes exist in human tissues.  相似文献   

11.
Intravascular application of goat anti-rabbit immunoglobulin E (IgE) was used to stimulate parenchymal mast cells in situ in perfused rabbit lungs. Sustained pulmonary arterial pressure rise was evoked in the absence of lung vascular permeability increase and lung edema formation. Early prostaglandin (PG) D2 and histamine release into the perfusate was documented, accompanied by more sustained liberation of cysteinyl leukotrienes (LT), LTB4, and PGI2. The quantities of these inflammatory mediators displayed the following order: histamine greater than cysteinyl-LT greater than PGI2 greater than LTB4 greater than PGD2. Pressor response and inflammatory mediator release revealed corresponding bell-shaped dose dependencies. Cyclooxygenase inhibition (acetylsalicylic acid) suppressed prostanoid generation, increased LT release, and did not substantially affect pressor response and histamine liberation. BW755 C, a cyclo- and lipoxygenase inhibitor, blocked the release of cysteinyl-LT and markedly reduced the liberation of the other inflammatory mediators as well as the pressor response. The H1-antagonist clemastine caused a moderate reduction of the anti-IgE-provoked pressure rise. We conclude that intravascular anti-IgE challenge in intact lungs provokes the release of an inflammatory mediator profile compatible with in situ lung parenchymal mast cell activation. Pulmonary hypertension represents the predominant vascular response, presumably mediated by cysteinyl-LT and, to a minor extent, histamine liberation.  相似文献   

12.
Summary Conventional studies of mast cells are limited by methodological restrictions such as a selective fixative-dependent routine staining blockage. This is thought to depend on the biochemical differences of the mast cell granule contents suggesting a cellular heterogeneity. Investigations of human mast cells, using routine methods, also suffer from the problem of a low signal-to-noise ratio.In the present study, normal human skin was used to compare an immunohistochemical method for histamine with two recommended mast-cell fixatives and a new commercial fixative in combination with three routine stains. Mast cells were found throughout the dermis with all the routine stains used. However, immunohistochemistry gave profoundly better results. Small structures, such as thin cytoplasmatic extensions and single granules, were readily detectable. Double-staining (immunohistochemistry followed by routine staining) revealed differences in staining capacity. All immunoreactive cells were not stained by routine stains and sometimes the opposite was also seen. This supports earlier reported evidence of heterogeneity, not only between skin and intestinal mast cells but also among skin mast cells themselves. Furthermore, by focusing on histamine, instead of heparin, we probably overcame the problems of the selective fixative-dependent routine staining blockage. Finally, the immunofluorescence technique provides a high signal-to-noise ratio and is an excellent method for making high-quality microphotographs of human mast cells.In conclusion, we have found histamine immunohistochemistry (a) to be easy to perform, (b) to show cytoplasmic details better of the, sometimes, dendritic-type mast cells, (c) to result in a higher signal-to-noise ratio, i.e. a better detectability, resulting in a higher number of cells being evident, and (d) to reveal the presence of histamine, instead of heparin, thus being more relevant to all kinds of histamine-related scientific endeavours. However, routine methods occasionally revealed single cells not visualized by the histamine immunohistochemistry.  相似文献   

13.
As part of an ongoing investigation of human mast cell heterogeneity, we have isolated, partially purified, and characterized the uterine mast cell and compared it with mast cells isolated from other organs. The average histamine content of myometrium and leiomyofibroma obtained from hysterectomies was 2.1 +/- 0.3 (mean +/- SEM) microgram/g of tissue (n = 10), and the histamine content of the two tissues did not differ significantly. A mild collagenase, hyaluronidase, and DNase digestion was used to disperse the uterine mast cells, with an average yield of 9.5% (range, 0 to 21%). The average histamine/uterine mast cell was 2.1 +/- 0.2 pg (n = 3), and 61 +/- 7% (n= 3) of the uterine mast cells survived overnight culture. Early purification efforts with Percoll gradients have yielded up to 80% pure uterine mast cells, with an average of 27 +/- 10% (n = 5). Uterine mast cells released histamine in response to the secretogogues anti-IgE and A23187 but did not respond to substance P or to the basophil secretogogues FMLP, C5a, and 12-O-tetradecanoylphorbol-13-acetate. After 1 microgram/ml anti-IgE stimulation, the uterine mast cell appeared to make significant quantities of PGD2 (89 +/- 26 ng/10(6) cells, n = 6) (p less than 0.05), as assayed by RIA. Simultaneously, leukotriene C4 release was 45 +/- 15 ng/10(6) cells, (n = 6) (p less than 0.05), as assayed by RIA. Combined gas-chromatography mass spectroscopy analysis of anti-IgE-stimulated cell supernatants confirmed the production of PGD2. In pharmacologic studies, isobutyl-methylxanthine and isoproterenol blocked anti-IgE-induced histamine release. The uterine mast cell is similar to the lung mast cell in terms of response to secretogogues and release of arachidonic acid metabolites. Ultrastructurally, the uterine mast cell contains scroll granules, crystal granules, combined granules, homogeneously dense granules, and large lipid bodies, many with focal lucencies within them. Particle granules, most frequently present in gut mast cells of mucosal origin, were absent from uterine mast cells. Although certain features are analogous to the ultrastructure of skin or lung mast cells, the combination of structures is distinctive for uterine mast cells.  相似文献   

14.
We investigated the effects of IgE versus IL-4 on Fc epsilon RI surface expression in differentiated human mast cells derived in vitro from umbilical cord blood mononuclear cells. We found that IgE (at 5 micrograms/ml) much more strikingly enhanced surface expression of Fc epsilon RI than did IL-4 (at 0.1-100 ng/ml); similar results were also obtained with differentiated mouse mast cells. However, IL-4 acted synergistically with IgE to enhance Fc epsilon RI expression in these umbilical cord blood-derived human mast cells, as well as in mouse peritoneal mast cells derived from IL-4-/- or IL-4+/+ mice. We also found that: 1) IgE-dependent enhancement of Fc epsilon RI expression was associated with a significantly enhanced ability of these human mast cells to secrete histamine, PGD2, and leukotriene C4 upon subsequent passive sensitization with IgE and challenge with anti-IgE; 2) preincubation with IL-4 enhanced IgE-dependent mediator secretion in these cells even in the absence of significant effects on Fc epsilon RI surface expression; 3) when used together with IgE, IL-4 enhanced IgE-dependent mediator secretion in human mast cells to levels greater than those observed in cells that had been preincubated with IgE alone; and 4) batches of human mast cells generated in vitro from umbilical cord blood cells derived from different donors exhibited differences in the magnitude and pattern of histamine and lipid mediator release in response to anti-IgE challenge, both under baseline conditions and after preincubation with IgE and/or IL-4.  相似文献   

15.
We have developed a procedure for the dispersion of mast cells from the intestinal lamina propria (LP) and epithelium of rats infected with the intestinal nematode, Nippostrongylus brasiliensis. The dispersed cells are morphologically and histochemically similar to intestinal mucosal mast cells (MMC) in situ and are distinguishable from peritoneal mast cells (PMC). MMC derived from the LP or epithelium of parasitized animals secrete histamine in response to the specific parasite antigens as well as anti-IgE. Unlike PMC, these cells are unresponsive to the basic secretagogues 48/80 and bee venom peptide 401. Similarly, bee venom peptide 401 conjugated with dansyl chloride binds to PMC and mast cells in the thymus and intestinal serosa, but not to mast cells in or derived from the intestinal LP and epithelium. Studies on PMC treated by the intestinal cell isolation procedure show that the functional characteristics of the MMC cannot be solely attributed to the isolation procedure. Thus, MMC have been isolated and shown to be morphologically, histochemically, and functionally different from PMC, as suggested by previous in vivo studies of the normal intestine.  相似文献   

16.
Protective vasodilation during acid back diffusion into the rat gastric mucosa depends on activation of sensory neurons and mast cell degranulation with histamine release. We hypothesized that these two mediator systems interact and that histamine partly exerts its effect via sensory nerves. Gastric blood flow (GBF) and luminal histamine were measured in chambered stomachs, and mast cell numbers were assessed by morphometry. Ablation of sensory neurons and depletion of mast cells were produced by pretreatment with capsaicin or dexamethasone, respectively. Mucosal exposure to 1.5 M NaCl and then to pH 1.0 saline in ablated and control rats caused increased luminal histamine and reduced numbers of mast cells. Enterochromaffin-like cell marker pancreastatin remained unchanged. Only control rats responded with an increase in GBF. Capsaicin stimulation (640 microM) of the undamaged mucosa induced identical increase in GBF and unchanged mast cell mass in normal and dexamethasone-treated rats. Increase in GBF after topical exposure to histamine (30 mM) in rats pretreated with capsaicin or a calcitonin gene-related peptide (CGRP)(1) antagonist human CGRP(8-37) or exposed to the calcium pore blocker ruthenium red was less than one-half of that in control rats. These data suggest that mast cell-derived histamine is involved in gastric vasodilatation during acid back diffusion partly via sensory neurons.  相似文献   

17.
Cytocentrifuge preparations of enzymatically dispersed human lung parenchymal mast cells were examined by light microscopy after fixation in either Mota's basic lead acetate or 10% neutral buffered formalin followed by toluidine blue staining at pH 0.5. Fixation in Mota's basic lead acetate allowed detection of all mast cells. However, after formalin fixation only 10.8 +/- 1.3%, range 4.7 to 17%, n = 8 remained detectable (i.e., formalin "resistant"). Therefore, the vast majority of human lung mast cells lose their metachromatic staining after formalin fixation (i.e., are formalin "sensitive"). Mast cells were then separated on the basis of diameter by countercurrent elutriation and on the basis of density by discontinuous Percoll gradients. Histochemically distinct populations of mast cell types emerged in all lungs studied. The proportion of formalin-resistant mast cells increased as a function of diameter: less than 5% at diameters of less than or equal to 11 mu and densities less than or equal to 1.063 g/ml, to 30 to 40% in cells of diameters greater than or equal to 16 mu and densities greater than or equal to 1.100 g/ml. Maximum anti-IgE challenge of nearly homogeneous formalin-sensitive mast cells (94.3 +/- 2.1% purity, n = 6) caused the generation of both leukotriene C4 (64.6 +/- 26.4 pg/mast cell) and PGD2 (114.8 +/- 37.5 pg/mast cell). Six- to eight-fold enrichment of formalin-resistant mast cells did not significantly alter the histamine release response or profiles of arachidonate metabolites. Similar results were obtained for the nonimmunologic stimulus ionophore A23187. We conclude that two histochemically distinct subpopulations, of mast cells are present in human lung suspensions. Although formalin-sensitive cells account for almost 90% of lung mast cells, formalin-resistant cells are separable by their large diameters and higher densities. Both subtypes show similar histamine release responses and arachidonate oxidation profiles.  相似文献   

18.
Mast cell heterogeneity: effects of neuroenteric peptides on histamine release   总被引:15,自引:0,他引:15  
Recent reports suggesting that the actions of certain neuroenteric peptides may be mediated in part by the secretion of histamine and other mast cell contents could have important implications for gastrointestinal motility and secretion. However, evidence for a mast cell-hormonal interaction is based on studies using peritoneal or cutaneous mast cells. Because intestinal mucosal mast cells (MMC) differ functionally from peritoneal mast cells (PMC), we compared the effects of several neurotransmitters and intestinal hormones on histamine secretion from two mast cell types in the rat. MMC hyperplasia was induced in rats by infection with the nematode Nippostrongylus brasiliensis, and MMC were isolated from the small intestine by collagenase digestion. Substance P, somatostatin, vasoactive intestinal polypeptide (VIP), neurotensin, and bradykinin had a potent secretagogue effect on (10(-7) to 10(-4)M) PMC which was temperature-, energy-, and calcium-dependent. In contrast to PMC, MMC released significant amounts of histamine only when challenged with substance P. Acetylcholine, bombesin, motilin, and pentagastrin had no secretory effect on either PMC or MMC. The differences between PMC and MMC in responsiveness to peptides could not be attributed to the MMC isolation procedure because PMC treated similarly or mixed with MMC suspensions retained their responsiveness to these stimuli. Our results extend the concept of neurocrine control of mast cell function, but indicate that mast cells from different sites have distinct profiles of responsiveness to regulatory peptides.  相似文献   

19.
Release of chemical mediators from partially purified human lung mast cells.   总被引:10,自引:0,他引:10  
Human lung mast cells dispersed by enzymatic digestion of human lung fragments were concentrated to greater than 50% purity by sedimentation in isopycnic and velocity gradients. The dispersed lung mast cells had a characteristic ultrasturctural appearance including granules with a scroll or reticular structural appearance including granules with a scroll or reticular structure surrounded by perigranular membranes. Histamine and preformed eosinophilotactic activity sedimented with mast cells on isopycnic gradients, and mast cells and these mediators were separated from the bulk of the other lung cells after velocity gradient sedimentation. The histamine content of isolated lung mast cells was calculated to range from 1.0 to 5.5 pg/cell. The quantity of SRS-A generated with anti-IgE or specific antigen was relatively limited but confined to the mast cell-rich fractions and associated with release of histamine and eosinophilotactic activity.  相似文献   

20.
We have examined the effects of FK-506 and of the struturally related macrolide rapamycin, which bind with high affinity to a specific binding protein (FKBP), to evaluate the involvement of this protein in the release of preformed (histamine) and de novo synthesized inflammatory mediators (sulfidopeptide leukotriene C4 and prostaglandin D2) from mast cells isolated from human lung parenchyma. FK-506 (0.1 to 300 nM) concentration dependently inhibited histamine release from lung parenchymal mast cells activated by anti-IgE. FK-506 was more potent in lung mast cells than in basophils (IC50 = 1.13 +/- 0.46 nM vs 5.28 +/- 0.88 nM; p less than 0.001), whereas the maximal inhibitory effect was higher in basophils than in lung mast cells (88.4 +/- 2.5% vs 76.4 +/- 3.8%; p less than 0.01). FK-506 had little or no inhibitory effect on histamine release from lung mast cells challenged with compound A23187, whereas it completely suppressed A23187-induced histamine release from basophils. FK-506 also inhibited the de novo synthesis of 5-lipoxygenase (sulfidopeptide leukotriene C4) and cyclo-oxygenase (prostaglandin D2) metabolites of arachidonic acid from mast cells challenged with anti-IgE. Unlike in basophils, Il-3 (3 to 30 ng/ml) did not modify anti-IgE- or A23187-induced histamine release from lung mast cells nor did it reverse the inhibitory effect of FK-506. Rapamycin (3 to 300 nM) had little or no effect on the release of histamine from lung mast cells, but it was a competitive antagonist of the inhibitory effect of FK-506 on anti-IgE-induced histamine release from human mast cells with a dissociation constant of about 12 nM. These data indicate that FK-506 is a potent anti-inflammatory agent that acts on human lung mast cells presumably by binding to a receptor site (i.e., FKBP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号