首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 953 毫秒
1.
库尔勒—吉木萨尔剖面横跨塔里木盆地北缘、天山造山带和准噶尔盆地南缘.沿剖面完成了重磁联合反演,获得了岩石圈二维密度结构与二维磁性结构.结果发现,塔里木盆地与准噶尔盆地向天山造山带对冲.在地壳范围内,塔里木盆地北缘与准噶尔盆地南缘的平均密度较高,天山造山带的地壳平均密度较低.天山造山带具有较高的磁化强度,尤其表现在准噶尔盆地南缘至天山造山带中部的整个地壳范围内,预示着天山南北可能具有不同的构造演化历史、构造运动方式以及构造运动强度.在塔里木盆地与天山造山带以及准噶尔盆地与天山造山带的接触部位的上地幔顶部分别发现了低密度体,推测在塔里木盆地由南而北向天山造山带“层间插入与俯冲消减”,以及准噶尔盆地由北而南向天山造山带俯冲的过程中塔里木盆地北缘和准噶尔盆地南缘下地壳物质被带进天山造山带上地幔顶部.库尔勒—吉木萨尔剖面岩石圈二维密度结构与磁性结构为天山造山带的构造分段提供了岩石圈尺度的依据.  相似文献   

2.
为了研究天山造山带的地球动力学,自1970年代以来,国内外在天山造山带开展了大量的深部探测工作,并取得了丰富的成果,本文对这些工作和成果进行了梳理和综述.已有研究结果表明:天山造山带的地壳厚度较大,但并无明显山根;地壳结构具有垂向分层和横向分块特征;壳幔界面不清晰,莫霍面在盆山接合部下方发生错断;壳内普遍发育低速异常体,地壳泊松比较高,暗示了地壳力学上的弱化作用;上地幔也存在波速异常体,低速异常可能与地幔热物质上涌有关,高速体可能是古老板块的岩石圈拆离碎片;莫霍面错断、Q值结构和波速异常特征可以用天山南北侧稳定地质块体往天山造山带之下俯冲来解释,这也得到高分辨率层析成像结果的支持;剪切波分裂结果暗示有相当厚的上地幔卷入了造山过程.上述资料表明天山造山带的变形和隆升是其南北侧稳定地质块体的构造挤压与壳—幔复杂耦合作用的共同结果.  相似文献   

3.
天山造山带一直以来是研究盆山耦合作用的理想场所,深入理解这一地区的壳幔结构对认识天山造山带深部动力学过程具有重要意义.本研究基于2009—2020年新疆区域数字地震台网固定台站、震后架设应急流动台站以及部分宽频带流动地震台站记录到的MS≥1.5地震到时资料,采用双差地震层析成像方法反演获得了新疆天山中段精细的地壳和上地幔顶部三维P波速度结构和地震震源参数.结果显示:新疆天山中段具有复杂的深浅构造关系,地壳浅部及上地壳P波速度结构与地表地质构造密切相关,高速异常区对应于天山造山带,低速异常区对应于沉积盆地.研究区中东段中地壳和下地壳存在较大范围低速区,与两侧准噶尔盆地和塔里木盆地上地壳和中地壳低速区相连,且准噶尔盆地和塔里木盆地下地壳及上地幔顶部双向均向新疆天山中段下方倾斜.结合前人诸多研究成果推测,在南北向构造挤压作用下,塔里木盆地与准噶尔盆地双向向天山造山带壳幔岩石圈发生“层间插入与俯冲削减”.重定位后地震分布显示,地震震源深度优势范围为0~25 km,主要沿断裂带、盆山结合部以及不同块体接触部位分布,且与壳内低速体有较好的相关性.这些结果可能为研究新疆天山中段...  相似文献   

4.
本研究拾取了中国数字测震台网固定台站记录的2008-2016年2级以上地震事件中的27233条高质量Pn到时资料,反演得到了郯庐断裂带及其邻区上地幔顶部Pn波速度和各向异性结构模型.结果显示,研究区上地幔顶部Pn波速度结构存在强烈的横向不均匀性,速度异常形态与区域地质构造较为吻合.太行山造山带、鲁西隆起、大别造山带、苏鲁褶皱带、胶辽隆起和华北盆地南端等隆起区表现为低波速异常,而黄海北、南部盆地、渤海湾和华北盆地北部等凹陷区均为高波速异常.壳内强震主要发生在Pn低波速异常和高低波速异常的横向过渡地带,说明强震的发生与上地幔结构的横向变化之间存在有一定关联.郯庐断裂带两侧Pn波速度以郯城地震为界其东北侧和西南侧分别分布有与断裂带近平行的低波速异常条带,而西北侧和东南侧分别分布有高波速异常条带,各向异性快波方向近乎沿断裂带走向,可能由于上地幔热物质沿郯庐断裂带上涌形成低速异常后断裂带发生左旋平移运动所致.华北盆地内上地幔顶部Pn波速度结构和各向异性的明显变化,反映华北克拉通破坏过程中经历了地幔热物质上涌、莫霍面隆升以及岩石圈拆沉等复杂构造变形.  相似文献   

5.
环渤海地区Pn波速度结构与各向异性   总被引:3,自引:1,他引:2       下载免费PDF全文
环渤海地区位于华北克拉通的中东部,是岩石圈破坏和减薄的主要地区,同时也是我国大陆东部强震的多发区和油气田产区,一直是国内外学者研究的重点区域.本研究利用环渤海地区1980—2015年期间中国地震台网高质量Pn波到时数据,反演得到环渤海地区Pn波速度结构及各向异性.结果显示,环渤海地区上地幔顶部的Pn波速度结构存在明显的横向不均匀性,且与区域地质构造有一定相关性.在地形隆起区,如太行山隆起、燕山隆起、鲁西隆起、胶辽隆起及苏鲁褶皱带地区,呈现为低波速异常,说明这些隆起区下方的上地幔存在热物质上涌,而凹陷地区,如华北盆地、南黄海北部盆地和南黄海南部盆地,则表现为高波速异常,说明这些凹陷地区上地幔顶部岩石圈强度较大.地壳内强震主要发生于低波速异常区和高低波速异常过渡带上,说明华北地区地壳强震的发生有可能受到上地幔深部构造的影响.太行山造山带地区Pn波各向异性快波方向为近NNE向,苏鲁褶皱带区域的Pn波各向异性快波方向为近NE向,与断裂带的走向基本一致,表明在地壳形变剧烈的地区,可能受上地幔顶部的深部动力学影响较大.华北盆地的北部和南部各向异性方向存在差异,可能与岩石圈的厚度及热状态的不均匀性有关.  相似文献   

6.
黎源  雷建设 《地球物理学报》2012,55(11):3615-3624
本研究使用中国地震局地壳应力研究所2010—2011年期间在云南地区布设流动地震台站以及青藏高原周边地区固定地震台站记录到的波形资料,提取了大量高质量Pn波到时资料.联合中国地震台网观测报告,我们获得了一个新的青藏高原东缘上地幔顶部Pn波速度和各向异性结构模型.结果显示,研究区内上地幔顶部存在明显横向不均匀性.古老盆地和稳定地台区如四川盆地、柴达木盆地、拉萨地块和阿拉善块体呈现为明显高波速异常,而祁连山至西秦岭褶皱带和川滇菱形块体北部等为相对弱高波速异常.在龙日坝断裂带以东的松潘—甘孜地块往南沿安宁河—则木河断裂至川滇菱形块体南部显示为一条近南北向明显低波速异常.三江褶皱系、缅甸弧俯冲带以及四川盆地东南等地区为明显低波速异常.地壳强震多发生在高波速异常边缘或高低波速异常过渡带上,表明地壳强震的孕育可能还与地幔构造作用存在一定相关性.青藏高原东构造结的各向异性快波方向呈顺时针旋转分布,与印度—欧亚碰撞密切相关.龙门山断裂带东西两侧的各向异性快波方向发生明显变化,由其西侧松潘—甘孜地块下方的NE向转变为四川盆地下方的近EW向,说明青藏高原物质流动遇四川盆地后分为NE和SW向两支.在川滇地区26°N以南地区上地幔顶部各向异性呈现近NS向与地表GPS观测相一致,但与SKS分裂结果存在较大差异,可能表明地壳与上地幔顶部形变表现为耦合现象,而上地幔顶部至岩石圈内部则存在解耦现象.  相似文献   

7.
中国境内天山地壳上地幔结构的地震层析成像   总被引:23,自引:5,他引:18  
根据横跨中国境内天山的库车—奎屯宽频带流动地震台阵和区域地震台网记录的近震和远震P波走时数据,利用地震层析成像方法重建了沿该地震台阵剖面下方400 km深度范围内地壳上地幔的P波速度结构.结果表明:沿新疆库车—奎屯剖面,天山地壳具有明显的横向分块结构,且南、北天山地壳显示了较为强烈的横向变形特征,表明塔里木地块对天山地壳具有强烈的侧向挤压作用;在塔里木和准噶尔地块上地幔顶部有厚度约60~90 km的高速异常体,塔里木—南天山下方的高速异常体产生了较为明显的弯曲变形,而准噶尔—北天山下方的高速异常体向南一直俯冲到中天山南侧边界下方300 km的深度,两者形成了不对称对冲构造;在塔里木和准噶尔地块下方150~400 km深度存在上地幔低速体,其中塔里木地块一侧的上地幔低速物质上涌到南天山地块的下方;在塔里木—南天山200~300 km深度范围的上地幔存在高速异常体,它可能是地幔热物质向上迁移过程融断的塔里木岩石圈的拆离体. 上述结果表明,塔里木地块的俯冲可能涉及整个岩石圈深度,但其前缘仅限于南天山的北缘;青藏高原隆升的远程效应可能不但驱动塔里木岩石圈向北俯冲,同时还造成天山造山带南侧上地幔物质的涌入;天山造山带上地幔广泛存在的低速异常有助于其上地幔的变形,而上地幔物质的强烈非均匀性应有助于推动天山造山带上地幔小尺度地幔对流的形成;根据研究区地壳上地幔速度结构特征推断,新近纪以来天山快速隆升的主要力源来自青藏高原快速隆升的远程效应,相对软弱的上地幔为加速天山造山带的变形和隆升创造了必要条件.  相似文献   

8.
天山作为当今世界上最为典型的陆内造山带,对于其深部结构和新生代构造变形过程的研究一直是地球科学领域的前沿和热点,并已经取得大量成果.本文系统总结了近年来利用地震学方法对天山造山带及其邻区壳幔结构研究的最新进展以及存在的争议.这些研究发现包括地壳厚度、莫霍面形态、地幔转换带厚度、地震波速、Q值结构在内的多结构参数的变化与区内各个大地构造单元的对应性较好,彰显出盆-山深部结构的显著差异.研究区各向异性结构复杂,地壳内部的偏振方向存在明显的横向变化,并在上地幔深度转换为和造山带走向基本一致.另外,在中下地壳和上地幔顶部,天山大部表现为明显的低速异常.以上结果揭示了陆内俯冲和地幔上涌对于塑造现今天山复杂构造格局与地质地貌特征的重要意义.然而,现有研究对于我国新疆境内天山壳幔各向异性、岩石圈底界面以及地幔转换带的分辨率还远远不够,并且对于一些重要的结构参数及其解释尚未达成一致的认识.密集流动地震台阵观测和多种地球物理资料的联合分析是解决这一问题并增进对陆内造山带深部动力学过程认识的有效途径.  相似文献   

9.
天山造山带是新生代以来复活隆升的陆内造山带,强烈的地震活动性使得理解和认识天山造山带深部结构及盆山耦合关系尤为重要。文章中使用天山造山带及邻区(40°~49°N,79°~93°E)85个台站2017—2019年的背景噪声资料,结合背景噪声互相关方法获得了6~52 s瑞利波相速度频散曲线,利用基于射线追踪的面波直接反演法对天山中段地壳三维S波速度结构及盆山耦合关系进行研究。结果显示:地壳浅层S波速度分布与构造单元中沉积层厚度相关,塔里木盆地北缘、准噶尔盆地南缘表现为低速,天山造山带表现为高速;到了中下地壳,天山造山带下方存在被高速异常包裹的低速体;莫霍面附近,天山造山带表现出相对低速;准噶尔盆地南缘和天山造山带的地壳厚度分别在45~50 km、50~62 km之间,沿南北向,天山造山带莫霍面呈现较为宽缓的形态;在82°~86.5°E之间,塔里木盆地和准噶尔盆地向天山下方双向俯冲,86.5°~88°E之间,准噶尔盆地向天山南向俯冲,由西向东,不同盆山耦合关系揭示了新生代以来天山中段不同区域构造运动差异,为进一步探讨造山动力过程提供参考。  相似文献   

10.
呼包盆地周缘壳、幔结构研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对呼包盆地周边七个台站的远震接收函数研究表明:研究区地壳厚度为43~46 km,地壳速度比和S波速度结构均无异常;阴山造山带岩石圈埋深为65~85 km,且上地幔S波平均速度偏低,是典型的异常地幔区.根据S波速度结构和地壳厚度随地形高程反比的变化关系,以及地表广泛出露的幔源玄武岩分布,推测该区地幔深部热物质上涌是阴山造山带隆升的原因之一.上升的软流层物质与地幔发生交代、侵蚀作用导致岩石圈减薄,S波速度降低.呼包盆地的形成可能与深部物质上涌造成的拉张效应有关.  相似文献   

11.
天山构造带及邻区地壳各向异性   总被引:2,自引:0,他引:2       下载免费PDF全文
鲍子文  高原 《地球物理学报》2017,60(4):1359-1375
天山构造带位于中国大陆西北部,是典型的岩石圈陆内缩短造山带.本文利用新疆区域数字地震台网2009年1月至2014年12月的近场小地震波形资料,采用剪切波分裂分析对天山构造带及邻区的地壳各向异性特征进行研究,获得了研究区域内39个台站的快剪切波偏振方向和慢剪切波时间延迟.剪切波分裂参数的空间特征显示,研究区上地壳各向异性具有分区性,各向异性特征与局部构造、地壳介质变形和应力分布有关.天山构造带的快剪切波偏振呈现出两个优势方向的特点,第一优势方向大致平行于台站附近断裂和天山构造带的走向,与断裂构造和应力的综合影响有关,另一个优势方向反映了主压应力的直接作用.北天山山前断裂带东段的断裂弯折部位和南天山局部地区的剪切波分裂参数与东、西两侧不同,与准噶尔盆地、塔里木盆地的南北向挤压作用密切相关.快剪切波偏振优势方向的剧烈变化揭示,在准噶尔盆地和塔里木盆地双向挤压隆起的过程中,天山构造带产生了强烈的局部不均匀变形.塔里木盆地西侧快剪切波偏振具有两个优势方向,一个为NNE方向,与帕米尔高原受到印度一欧亚板块碰撞产生的北向挤压作用有关,另一个为NW方向,指出了塔里木盆地区域主压应力方向.准噶尔盆地北部也存在NE和NW两个快波偏振优势方向,主要与断裂的影响有关.天山构造带区域内的慢剪切波时间延迟总体上低于塔里木盆地西侧和准噶尔盆地北部,同时慢剪切波时间延迟的结果也进一步证实了天山构造带的局部强烈变形.  相似文献   

12.
新疆地区环境噪声层析成像研究   总被引:7,自引:0,他引:7       下载免费PDF全文
本文利用北京大学宽频带流动地震台阵和新疆地震监测台网12个月连续地震记录数据,采用环境噪声层析成像方法获得了新疆地区的周期从10~35 s范围内的瑞利面波相速度异常分布图像.研究结果与地表地质构造相一致,新疆地区的天山、两盆大地构造与瑞利面波相速度异常有较好的对应关系.短周期10~20 s的图像显示两个盆地内都呈现低速...  相似文献   

13.
中天山及邻区S波分裂研究及其动力学意义   总被引:8,自引:4,他引:4       下载免费PDF全文
本文利用天山及其邻区布设的37个宽频带地震台站记录到的远震波形数据,分别采用最小能量法和旋转相关法对SKS和SKKS波震相进行了偏振分析,计算出了台站下方介质的S波分裂参数:快波的偏振方向(φ)和慢波延迟时间(δt).本文研究结果表明:中天山内部大多数台站的各向异性快波方向呈NEE-SWW向,与天山走向平行,慢波时间延迟为0.4~1.7 s,这是塔里木、哈萨克斯坦的南北双向俯冲及其导致的天山地区岩石圈地幔南北向缩短变形的直接反映.本文研究发现中天山北部部分台站下方地震各向异性快波方向与慢波延时随方位角呈现规律性的变化,可能暗示该区上地幔各向异性不能仅用单层水平各向异性这一简单模式来解释.75°E以西的天山地区台站下方S波快波方向和延时具有强烈的横向变化,可能与研究区下方存在的小规模对流有关.中天山不同地段地震台站下方各向异性明显不同,进一步证实了天山地区构造变形的复杂性.  相似文献   

14.
华北地区地壳上地幔三维P波速度结构   总被引:9,自引:2,他引:7       下载免费PDF全文
利用华北地震科学台阵和首都圈地震台网记录的4511次近震和625次远震的P波到时数据,采用纬度和经度方向分别为0.5°×0.5°的网格划分,反演得到了华北北部地区(111°E—120°E,37°N—42°N)深至400km的地壳上地幔三维P波速度结构.层析成像结果表明,研究区的速度存在明显的横向不均匀性,随着深度增加横向不均匀性总体呈现减弱趋势.燕山隆起带在60—120km深度内存在明显的高速异常,这与较大的岩石圈厚度有关;山西裂陷盆地、华北平原下方60km深度存在明显低速异常,与软流圈的出现有关.燕山隆起带岩石圈厚度在120km以上,明显比太行山隆起的岩石圈厚度大,与稳定大陆地区的岩石圈厚度一致.太行山山前断裂已切穿莫霍面,贯入岩石圈.研究区上地幔顶部大范围的低速异常反映了软流圈上隆的特点.在华北平原及燕山隆起下方200—300km存在高速异常可能与太古代大陆板块岩石圈的残留体有关.  相似文献   

15.
中天山地区的Pn波速度结构与各向异性   总被引:4,自引:1,他引:3       下载免费PDF全文
利用宽频带流动地震台阵GHENGIS和吉尔吉斯地震台网KNET记录的地震波走时数据,反演了中天山地区的Pn波速度结构和各向异性.结果表明,中天山上地幔顶部平均速度偏低,具有构造活动地区的特点和明显的横向非均匀性;中天山南部地幔上涌区的Pn波速度非常低,表明存在较高的热流活动.Pn波速度的变化与地震分布有着密切的对应关系:地震大都发生在中天山北部Pn波高速区上方,而南部的Pn波低速区上方几乎没有地震.这一现象说明地幔上涌引起高温极大地降低了岩石层地幔的强度,并以热传导的方式进入地壳使其失去地震破裂强度而发生韧性变形.中天山北部和南部的各向异性也存在一定的差异,南部各向异性的快波方向为近南北方向,与SKS波的各向异性特征基本一致,反映了地幔物质的迁移方向;北部各向异性的快波方向呈向南凸出的旋转趋势,估计与哈萨克地台南缘楚河盆地地壳块体向天山挤入造成应力场的改变和岩石层变形有关.  相似文献   

16.
新疆地区S波分裂研究h   总被引:1,自引:0,他引:1       下载免费PDF全文
利用国家地震台网及中国地震局ldquo;十五rdquo;期间在新疆地区布设的宽频地震台站记录到的远震波形数据,采用最小能量法和旋转相关法分别对SKS、 SKKS震相进行了偏振分析,计算了台站下方介质各向异性的分裂参数:快波的偏振方向(phi;)和慢波延迟时间(delta;t).研究结果表明,塔里木盆地北缘、天山造山带和阿尔泰造山带大多数台站的快波偏振方向与台站下方构造走向方向接近,其快慢波分裂延迟介于0.8——1.8 s之间. 这与印度 欧亚碰撞导致的岩石圈缩短有关.相比而言,塔里木盆地和准噶尔盆地内部的各向异性强度明显要弱,表明其自前寒武形成以来并没有经历强烈的变形作用.阿尔金断裂带附近台站下方各向异性快波方向与断裂带的走向具有很强的相关性,表明该断裂已经切穿整个岩石圈.   相似文献   

17.
A 3-D velocity model of the Tien Shan crust and upper mantle is constructed through the inversion of the receiver functions of P and S waves together with teleseismic traveltime anomalies at nearly 40 local seismic stations. It is found that in the vast central region, where no strong earthquakes have been known over the past century, the S wave velocity at depths of 10–35 km is lower than in adjacent regions by up to 10%. These data are evidence for mechanical weakness of the crust preventing the accumulation of elastic energy. Apparently, the lower velocity and the weakness of the crust are due to the presence of water. The weakness of the crust is one of the possible reasons for the strain localization responsible for the formation of the present Tien Shan but can also be due in part to the young orogenesis. The crustal thickness is largest (about 60 km) in the Tarim-Tien Shan junction zone. The crust-mantle boundary in this region descends by a jump as a result of an increase in the lower crust thickness. This is probably due to the underthrusting of the Tien Shan by the Tarim lithosphere. This causes the mechanically weak lower crust of the Tarim to delaminate and accumulate in nearly the same way as an accretionary prism during the subduction of oceanic lithosphere. In the upper mantle, the analysis has revealed a low velocity anomaly, apparently related to basaltic outflows of the Upper Cretaceous-Early Paleogene. The Cenozoic Bachu uplift in the northern Tarim depression is also associated with the low velocity anomaly. The Naryn depression is characterized by a high velocity in the upper mantle and can be interpreted as a fragment of an ancient platform.  相似文献   

18.
The Tienshan orogenic belt is one of the most active intracontinental orogenic belts in the world. Studying the deep crust-mantle structure in this area is of great significance for understanding the deep dynamics of the Tienshan orogen. The distribution of fixed seismic stations in the Tianshan orogenic belt is sparse. The low resolution of the existing tomographic results in the Tienshan orogenic belt has affected the in-depth understanding of the deep dynamics of the Tienshan orogenic belt. In this paper, the observation data of 52 mobile seismic stations in the Xinjiang Seismic Network and the 11 new seismic stations in the Tienshan area for one-year observations are used. The seismic ambient noise tomography method is used to obtain the Rayleigh surface wave velocity distribution image in the range of 10~50s beneath the Chinese Tienshan and its adjacent areas (41°~48° N, 79°~91° E). The joint inversion of surface wave and receiver function reveals the S-wave velocity structure of the crust and uppermost mantle and the crustal thickness below the station beneath the Chinese Tienshan area(41°~46° N, 79°~91° E). The use of observation data from mobile stations and new fixed seismic stations has improved the resolution of surface wave phase velocity imaging and S-wave velocity structure models in the study area.
The results show that there are many obvious low-velocity layers in the crust near the basin-bearing zone in the northern Tienshan Mountains and the southern Tienshan Mountains. There are significant differences in the structural characteristics and distribution range of the low-velocity zone in the northern margin and the southern margin. Combining previous research results on artificial seismic profiles, receiver function profiles, teleseismic tomography, and continental subduction simulation experiments, it is speculated that the subduction of the Tarim Basin and the Junggar Basin to the Tienshan orogenic belt mainly occurs in the middle of the Chinese Tienshan orogenic belt, and the subduction of the southern margin of the Tienshan Mountains is larger than that of the northern margin, and the subduction of the eastern crust is not obvious or in the early subduction stage. There are many low-velocity layers in the inner crust of the Tienshan orogenic belt, and most of them correspond to the strong uplifting areas that are currently occurring. The thickness of the crust below the Tienshan orogenic belt is between 55km and 63km. The thickness of the crust(about 63km)is the largest near the BLT seismic station in the Bazhou region of Xinjiang. The average crustal thickness of the Tarim Basin is about 45km, and that of the Junggar Basin is 47km. The S-wave velocity structure obtained in this study can provide a new deep basis for the study of the segmentation of the Tienshan orogenic belt and the difference of the basin-mountain coupling type.  相似文献   

19.
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation.The data we use are from the China National Seismic Network,global and regional networks and PASSCAL stations in the region.We first acquire cross-correlation seismograms between all possible station pairs.We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s.After that,Rayleigh wave group and phase velocity dispersion maps on 1° by 1° spatial grids are obtained at different periods.Finally,we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node.The inversion results show large-scale structures that correlate well with surface geology.Near the surface,velocities in major basins are anomalously slow,consistent with the thick sediments.East-west contrasts are striking in Moho depth.There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar,Tarim,Ordos,and Sichuan).These strong blocks,therefore,appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape.In northwest TP in Qiangtang,slow anomalies extend from the crust to the mantle lithosphere.Meanwhile,widespread,a prominent low-velocity zone is observed in the middle crust beneath most of the central,eastern and southeastern Tibetan plateau,consistent with a weak (and perhaps mobile) middle crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号