首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. I. Vincent 《Polymer》1972,13(12):558-560
The brittle point of un-notched specimens occurs when the tensile yield stress is equal to a critical value of the tensile breaking stress. This critical tensile strength correlates well with the molecular cross-sectional area as calculated from crystallographic data or models. This finding accounts for some apparent anomalies found when trying to relate impact behaviour with dynamic mechanical data.  相似文献   

2.
Single polymer composites have been prepared using different morphologies of polyethylene as matrix and as the reinforcement. Depending on annealing conditions, the ultraoriented fibers used as reinforcement can have higher melting points (ca. 139°C) than the matrix made from the same conventionally crystallized high-density polyethylene (ca. 132°C) or from low-density polyethylene (ca. 110°C). The optimum temperature has been assessed for bonding to occur by growth of transcrystalline regions from the melt matrix without considerable modulus reduction of the annealed ultraoriented and reinforcement fiber or film. Pullout tests have been used for determining the interfacial shear strength of these single polymer composites. The interfacial shear strength for the high-density polyethylene films embedded in a low-density polyethylene matrix is 7.5 MPa and for high-density polyethylene self-composites is 17 MPa. These values are greater than the strength for glass-reinforced resins. The strength is mainly due to the unique epitaxial bonding which gives greater adhesion than the compressive and radial stresses arising from the differential shrinkage of matrix and reinforcement. The tensile modulus of composites prepared from uniaxial and continuous high-density polyethylene films embedded in low-density polyethylene obeys the simple law of mixtures and the reinforced low-density polyethylene modulus is increased by a factor of 10. High strength cross-ply high-density-polyethylene—low-density-polyethylene laminates have also been prepared and the mechanical properties have been studied as the film orientation is varied with respect to the tensile axis.  相似文献   

3.
The effect of nickel (Ni) powder on crystallization of polypropylene (PP) in PP/Ni composites is studied through differential scanning calorimetry (DSC) and wide-angle X-ray diffraction techniques. Interpretation of crystallization exotherm peaks in terms of nucleation and growth rates of crystallization, crystallite size distribution, and crystallinity indicated differences in the morphology of PP in all the composites. Crystallinity and tensile behavior decreased on nickel addition. There is a good qualitative agreement in the crystallinity determined by X-ray diffraction and DSC exotherms, and the variation in both cases, with the volume percent of filler is similar. An attempt has been made to correlate the various tensile properties with the crystallization parameters such as the crystallinity and crystallite size distribution.  相似文献   

4.
Polysialate, or geopolymer, composites have gained interest due to their inherent high temperature resistance, low density and ease of manufacturing. These characteristics also suggest that polysialate composites have significant potential as materials in high temperature structures, although little is known about their thermal and mechanical properties. This study aimed to determine relevant thermal and mechanical properties over a representative temperature range. The results show that polysialate composites can exhibit stable thermal properties up to 1000 °C. Tensile properties up to 760 °C highlight a significant reduction in stiffness, but a retention of strength, at these temperatures. The thermal and mechanical results achieved provide strong evidence that polysialate composites can be suitable for use in high temperature structures, whilst subsequently providing an understanding of their limitations. In addition to this, the values ascertained also provide the data required for the design and modelling of next generation high temperature structures.  相似文献   

5.
The room temperature tensile properties of granular starch‐filled low‐density polyethylene (PE) and starch‐filled blends of PE and poly(hydroxy ester ether) (PHEE) are presented. At low filler contents (?f), the filled PE:PHEE blend has a higher yield stress and tensile strength than either the starch/PE composites or the unfilled matrix. The increase in the yield stress indicates that matrix yielding occurs before debonding. At high filler contents, the tensile strength of the filled blend is again greater than the strength of the starch/PE composites. This increase in strength is the result of higher debonding stresses in the ternary composite. In both materials there is a change in the deformation process at a critical filler content, ?cr. Below ?cr, deformation involves the growth of debonded regions; above ?cr, deformation is confined to narrow damaged zones. There is a reduction in the strain at failure when this change in the deformation process occurs. Although the PHEE surface coating affects the debonding stress and the tensile strength, it does not affect the strain at failure or the tensile modulus. For both composite materials, the increase in modulus with ?f can be adequately described using a simplified form of the Kerner equation. Polym. Eng. Sci. 44:1839–1847, 2004. © 2004 Society of Plastics Engineers.  相似文献   

6.
The influence of the carbon black content on the mechanical and electrical properties of polypropylene/carbon black composites prepared by different processing procedures was investigated. The formation of a continuous conducting network in the insulating matrix and, consequently, the percolation threshold depend strongly on the processing route and influence both the mechanical and electrical properties of the prepared composites. An interesting coincidence of the dependencies of conductivity and elongation at break on the filler content was found. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1903–1906, 2001  相似文献   

7.
Recovery experiments above Tg and tensile tests have been performed on glass bead and short glass fiber–polystyrene composite sheets obtained from extrusion and subsequent hot drawing. A shift procedure has been applied to the recoil data using a WLF equation. The data reported show that both dimensional stability and mechanical properties are enhanced by adding rigid fillers to the drawn thermoplastic matrix. The presence of short fibers reduces strongly the recoverable strain of the oriented material. A simple model able to predict the equilibrium values of the length reversion ratio of glass bead composites is developed and compares well with the experimental data.  相似文献   

8.
This study demonstrates the microscale and nanoscale mechanical properties of a multiwalled carbon nanotubes/polyether ether ketone (MWCNTs/PEEK) composite utilizing a novel in situ testing method. Nanoscale testing specimens of a composite of PEEK thin film dispersed with 6.5 wt% MWCNTs were successfully prepared using focused ion beam (FIB) and investigated by a tensile testing device accommodated inside a field emission scanning electron microscope. The average tensile strength of the nanocomposite was measured to be 388.66 MPa. The average Young's modulus measured at 6.52 GPa demonstrated a 23% increase compared to that of the bulk specimen, suggesting a size‐dependent mechanism that limits the plastic deformation of the microscale specimens possibly due to the limited defects distribution and motion constraint of the polymer chain in the small specimen and the amorphous regions of the PEEK matrix. POLYM. ENG. SCI., 59:1209–1214 2019. © 2019 Society of Plastics Engineers  相似文献   

9.
In this paper, a new composite material, AEG, which was developed in our laboratory by catalytic grafting polymerization of ethylene on asbestos fibers, was used to improve the properties of asbestos/HDPE composites. Tensile testing shows that the AEG modified asbestos/HDPE composites exhibit significantly higher tensile strength and elongation at break than the unmodified ones. Instrumented impact testing permits a detailed understanding of the modifying effect of AEG on impact properties. The records acquired during impact for the unmodified composites were truncated at the onset of initial fracture, showing a typical brittle cleavage fracture. In contrast, the records for the AEG modified composites showed an effective post-initial fracture behavior. The load at peak, the energy required to initiate and propagate the fracture, and the deformation during impact increase dramatically for the AEG modified composites. SEM micrographs of the fractured surfaces also demonstrate the difference in the morphology of the two composites.  相似文献   

10.
The objective of this article is to study the effect of fiber curvature on the elastic properties of a long‐fiber composite. The study was carried out using a unit cell homogenization approach and micromechanical modeling. In the first approach, a unit cell with a fiber bundle was defined and used in the analysis. Appropriate boundary conditions were prescribed to extract the elastic stiffness components. The second approach made use of the Eshelby‐Mori‐Tanaka model to compute the stiffness of the aligned fiber composite. Fiber curvature was then accounted for through the variation of fiber orientation within a prescribed range that corresponds to a given degree of fiber curvature. It was found that curved fibers significantly affect the composite properties since they lead to a significant stiffness reduction in the longitudinal direction while relatively small increase in stiffness is achieved in the transverse direction in the plane containing the fiber tow. POLYM. COMPOS., 2008. Published 2008 Society of Plastics Engineers  相似文献   

11.
Four types of random-in-plane short fiber reinforced polymer composites were manufactured by the prepreg route using carbon or glass fiber tissue and 913 or 924 epoxy resin. The in-plane Young's modules and in-plane shear modulus of the composites were measured over the temperature range − 100 to + 200°C by dynamic mechanical analysis using three point bend and rectangular torsion testing geometries. Theoretical predictions of the elastic properties of the composites were determined over the same temperature range and compared with the experiment. Of particular interest was the use of the “S mixing rule” of McGee and McCullough to determine a single theoretical estimate for the composite elastic properties. Excellent agreement between experiment and theory was found for the four composites over the majority of the measured temperature range.  相似文献   

12.
不同聚合物基体对复合材料性能的影响   总被引:2,自引:0,他引:2  
研究了以不同类型聚合物为基体的高分子夏合材料的导电性和力学强度的变化规律,并从聚合物的结晶性,对填料的粘结性及其表面张力等方面进行了分析。若基体的结晶性和极性较强,则在导电性提高的同时,冲击强度下降;若基体本身比较柔软且对填料有足够的亲和力,则在一定的填料含量范围内,导电性和冲击强度可同时提高。  相似文献   

13.
Two different mixed connectivity composites, consisting of a ferroelectric ceramic powder of calcium modified lead titanate (PTCa) dispersed in a polymer matrix, have been fabricated and their ferroelectric properties have been investigated. Hysteresis measurements have been conducted on composites of PTCa with a polar polymer of polyvinylidene trifluoroethylene (P(VDF-TrFE)) and PTCa with a thermosetting epoxy resin to determine the coercive fields and remanent polarization of the two different composites. The composites show noticeable differences in their behavior during poling along with the values of their piezoelectric coefficients, with the composite of PTCa/P(VDF-TrFE) showing enhanced piezoelectric activity over that of PTCa/epoxy. This paper reports on the polarization properties and the microstructural nature of the composites.  相似文献   

14.
In situ polymer/polymer short fiber composites were generated by a two‐step process. In the first step, a polyamide (PA) dispersed phase is blended with a polypropylene (PP) matrix in a twin‐screw extruder at a temperature at which both polymers are in molten state. The extrudate was then stretched at the die exit to generate long and thin fibers of PA in the PP matrix well oriented in the direction of flow. Adhesion between the phases was promoted by addition of PP grafted with maleic anhydride (PP‐g‐MA). During the second step, the chopped extrudates were molded by injection or compression molding at a temperature at which PA in the form of fibers is in the solid state and the PP matrix is molten. The control of the formation of such ultrafine fibers was obtained by quantitative analyses for the deformation of the minor PA‐phase during twin‐screw extrusion and stretching at the exit of the die that involve both shear and extensional flows. Morphology and mechanical properties of such polymer/polymer composites were compared to equivalent blends with dispersed spherical particles‐type morphology prepared in a batch mixer device.  相似文献   

15.
Based on the well-known pin-on-disc test rig, a new test setup has been developed for online measuring of the wear and friction behavior of polymer matrix composites. Contrasting with a traditional friction and wear test rig, a steel pin and composite disc are presently used to study the influence of wear debris and fiber orientation. This test setup has a main influence on the results. The polymer materials, a thermoset polyester, and a thermoplastic polyphenylene sulfide were reinforced with glass and carbon fibers, respectively. The results show two different promising aspects of “new” materials for wear and friction applications and more specific to different machine components, namely self-lubricating and self-protecting ability. The self-lubricating ability exists from creating a polymer film on the surface which reduces the coefficient of friction, and the self-protecting behavior is because of the creation of a protecting carbon film on the surface. The self-lubricating ability depends on the test parameters, while the self-protecting ability was due to the material and the structure. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

16.
Filled polymer composites have been prepared in which the energetics of the filler surfaces was systematically varied in order to investigate the dependence of the mechanical properties of the composite on the interfacial strength as predicted by the thermodynamic work of adhesion at the filler-matrix interface. A high-purity silica filler was used, treated with three different organofunctional silane coupling agents (two alkylsilanes and an aminosilane) to varying degrees from zero to complete coverage. The surface energetics of the modified fillers was characterized using both inverse gas chromatography (IGC) and dynamic contact angle analysis (DCA). While the surface energy assessments from IGC were higher than those obtained with wetting measurements, as expected, the trends with fractional coverage of silane were the same for each method, and were used to evaluate the thermodynamic work of adhesion. Highly filled polymer composites were prepared by dispersing the variously treated silica fillers into the amorphous thermoplastic matrix polymers: poly(methyl methacrylate) and poly(vinyl butyral). Specimens of the composites were tested mechanically to give the yield stress. The poly(methyl methacrylate) composites all failed cohesively in the matrix, unaffected by any of the filler surface treatments. The poly(vinyl butyral) composites, however, all displayed purely interfacial failure, with the yield stress strongly dependent on the type and extent of the filler surface treatment. While all three silanes were found to decrease the filler surface energy, and consequently the thermodynamic work of adhesion, with higher surface coverage, corresponding decreases in the yield stress were found only for the alkylsilanes. For the aminosilane, the measured yield stress was found to increase with surface coverage and therefore to decrease with the work of adhesion. The difference in behavior between the two types of coupling agent is explained in terms of acid-base effects.  相似文献   

17.
In this study, the mechanical properties and physical–chemical characteristics of curaua composites were evaluated using tensile and short beam testing and dynamic mechanical analysis. Curaua/polyester composites with different pretreatment (washing and drying), fiber length (10–50 mm) and fiber volume fraction (%Vf) (11, 22, and 38 vol%) were studied. The results show that the composites produced using 50 mm long washed/dried fibers and %Vf of 38 vol% achieved better mechanical properties, such as tensile strength and modulus and short beam strength. Fragility index “m” of the composites increased upon curaua incorporation, which may be attributed to a reduction in polyester chemical interactions (due to fiber dwelling of the polyester network). The energy required in initiating the cooperative motion at the “ideal” glass transition temperature and the cooperative rearrangement regions (CRR) also increased upon curaua incorporation, since CRR is considered the subsystem of the sample and for higher fiber content the greater the molecular heterogeneity. Finally, the Angell fragility concept was successfully applied to polymer composite systems. POLYM. COMPOS., 35:1078–1086, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
Piezoresistive polymeric composites were prepared by melt mixing of polypropylene (PP) with expanded graphite (EG) (10–15 wt%) and/or multiwalled carbon nanotubes (MWCNTs) (1–2 wt%). The composites were extruded at a temperature of 185 °C, by adopting 2.5–10 rpm screw speeds, and fibres with diameters of 0.2, 1.5 and 3 mm, were obtained. An integrated piezoresistive sensor device was obtained by hot pressing the extruded fibres into two sandwiched PP panels.Structure and morphology of the carbon fillers (EG and MWCNTs) and of the fibres, were investigated by means of X-ray diffraction, optical microscopy, scanning electron microscopy (conventional and conductive SEM) and atomic force microscopy. Piezoelectric properties of fibres and sensor devices were detected through a set up made by a dynamometer, a potentiometer and a digital multimeter. It was shown, that mechanical deformations, due to the applied loads, affect remarkably the resistivity of the materials.  相似文献   

19.
Conjugated polymer/nanodiamond nanocomposites have been known as high-performance materials due to improved physical properties relative to conventional composites. In this attempt, novel conjugated polymer/nanodiamond nanocomposites were successfully prepared by in situ oxidative polymerization. Physical characteristics of the resultant nanocomposites were explored using Fourier transform infrared spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscope, differential scanning calorimeter, thermogravimetric analysis and X-ray diffraction spectroscopy. Structural analysis revealed the oxidative polymerization of various matrices [polyaniline (PANi), polypyrrole (PPy), polythiophene (PTh) and polyazopyridine (PAP)] over the surface of functionalized (F-NDs) and non-functionalized nanodiamonds (NF-NDs) thus ensuing NF-NDs/PAP/PANi/PPy, F-NDs/PAP/PANi/PPy, NF-NDs/PANi/PPy/PTh and F-NDs/PANi/PPy/PTh nanocomposites. FESEM images depicted the fibrillar morphology of resulting nanocomposites with granular arrangement of nanofiller in matrix. Thermal analysis results showed that the functionalized F-NDs/PAP/PANi/PPy hybrid had higher value of 10 % weight loss around 489 °C relative to F-NDs/PANi/PPy/PTh with T10 at 471 °C. The glass transition temperature was found to be 99 and 105 °C for NF-NDs/PANi/PPy/PTh and F-NDs/PANi/PPy/PTh, respectively. On the other hand, NF-NDS/PAP/PANi/PPy and F-NDs/PAP/PANi/PPy showed higher T gs of 109 and 118 °C. The conductivity of NF-NDs/PAP/PANi/PPy was 3.8 Scm?1 and improved with the functionalized filler loading in F-NDs/PAP/PANi/PPy up to 5.4 Scm?1, while NF-NDs/PANi/PPy/PTh and F-NDs/PANi/PPy/PTh had relatively lower values around 2.9 and 3.7 Scm?1, respectively. New conducting nanocomposites may act as useful contenders in significant industrial applications such as polymer Li-ion battery.  相似文献   

20.
The thermal, dynamic mechanical, and dielectric properties of copper‐coated lipid tubules incorporated into three polyurethane matrices with varying surface tensions have been examined. The tubules did not affect the glass‐transition temperature of the polymer matrices, indicating that the tubule–polymer interactions may not be strong enough to restrict the mobility of polymer chains near the filler surface. The composite's elastic modulus can also be adequately modeled using the Nielsen equation. In addition, the real part of the permittivity for the composites increased monotonically over the tubule concentration range. All samples had a small imaginary part of the permittivity, indicating the tubule concentrations were below the percolation threshold concentration. Also, the three types of matrices had comparable permittivity values at each tubule concentration, suggesting the polymer surface tension did not affect the tubule distribution in the composite. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3218–3224, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号