首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于点云中心的激光雷达与相机联合标定方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对激光雷达与相机联合使用遇到的点云稀疏、相机受环境光照影响失真等问题,提出一种基于点云中心的激光雷达与相机自动配准方法,避免了传统联合标定需要手动选择特征点以及连续采集多帧等问题。该方法在对点云与图像预处理后,利用平面法向量的一致性实现多标定板点云自动分割,提取标定板在激光坐标系和相机坐标下的点云;然后通过点云聚集迭代求解中心点,实现两个传感器标定板对应点云中心的粗配准;最终利用迭代最近点算法进行精配准,获得标定参数,完成联合标定。实测表明,在激光雷达误差±3 cm范围内,点云正确投影比例达到97.93%,可以有效获取高精度联合标定参数,满足空间环境对激光雷达和相机数据融合的要求。  相似文献   

2.
针对海量激光点云异地实时扫描处理困难和现场绝对坐标系的配准问题,结合北斗/GNSS定位系统和5G通讯技术研制一套低成本地基激光雷达测量系统。该测量系统由激光雷达、高精度电机、北斗/GNSS接收模块和5G模组集成,激光雷达采集点云信息,高精度电机获取角度信息,北斗/GNSS接收模块接收时间并通过自主研发的时间同步模块,与高精度电机与激光雷达进行时间标记,获取带有时间标签的点云和角度文件,并通过5G通讯技术实时传输。终端通过自主研发的数据预处理软件,通过线性插值算法进行多帧点云时空配准,室外根据北斗/GNSS坐标进行多站激光点云粗配准,室内无北斗/GNSS环境下通过单站特征点进行多站点云粗配准,再利用临近迭代算法进行精配准以完成整体配准,并在自主研发的实时点云管理与可视化系统上进行可视化。实验表明该测量系统使用5G通讯技术传输速率50 Mbit/s,可以实现异地实时扫描传输,配准后的点云误差在3 mm以下,可为数字孪生、物质文化遗产监测、特大异形建筑施工运维分析等实时应用领域提供数字基础设施。  相似文献   

3.
为了提高立体视觉系统在大视场下的测量精度,基于误差溯源思想提出了一种构建虚拟立体靶标的大视场高精度视觉系统标定方法,克服了大尺寸高精度标定物难以制造等问题。对影响立体视觉系统测量精度的主要因素进行分析,列出视觉测量系统的误差溯源链,解析了大视场视觉系统精度瓶颈的原因。借助激光跟踪仪,运用非线性最小二乘单位四元数算法求解坐标系刚体变换,获取大范围高精度的空间点阵,构建虚拟靶标。在相机畸变模型中考虑了三阶径向畸变和二阶切向畸变参数,并使用Levenberg-Marquardt迭代算法进行标定参数求解,进一步提高系统精度。实验构建了一套测量空间约为4m×3m×2m的双目立体视觉系统,通过对某型号高精度直线导轨进行点距测量,在测量距离3m处,152组不同长度的横向距离测量的误差算术均值为-0.003mm,误差标准差为0.08mm。测量精度相较于传统的平面标定法有较大提升。  相似文献   

4.
相位测量轮廓术(PMP)是目前众多光学三维测量方法中比较成熟可靠的一种,其系统标定包括Z和(X,Y)坐标标定.在借鉴传统标定方法优缺点的基础上,提出了一种基于BP和RBF神经网络结合的PMP系统面内标定新方法,该方法将黑白棋盘图案在有效视场内沿世界坐标系Z轴多次放置,获取数据样本.在BP网络对数据样本进行训练和仿真后,利用RBF网络对误差数据进行训练和测试.实验中,BP网络训练步数仅为21步,RBF网络测试样本的平均距离误差仅为0.008 mm,此方法具有较高的标定效率和标定精度.  相似文献   

5.
为实现调频连续波(Frequency-modulated Continuous-wave,FMCW)激光雷达的高精度测量,针对激光雷达机械加工及装配过程中引入的几何结构误差,提出了基于激光雷达坐标测量误差的系统误差模型及误差修正方法。建立了激光雷达坐标系组,分析了空间坐标测量误差的来源。通过坐标系间的变换矩阵,实现了测量坐标的几何误差传递。然后,归并各坐标系的几何误差,建立了显式的激光雷达几何空间坐标误差表达式。并以此为基础,建立最小二乘优化目标,解算各项误差因子和修正后坐标。求得的误差因子可以用作后续坐标测量结果的修正。最后,基于该方法设计了一套以激光跟踪仪为高精度测量仪器、以靶球球心位置为标准点的标定场,使用激光跟踪仪与激光雷达测量相同位置的靶球完成系统误差修正。实验结果表明,经修正激光雷达空间距离测量的平均误差由0.044 8%下降到0.003 8%,误差极大值由4.17 mm下降到0.30 mm,验证了激光雷达几何结构误差标定和误差修正方法的有效性。  相似文献   

6.
为了提高立体视觉结构光三维重建系统的精度,提出了一种面向立体视觉结构光三维重建系统的点云误差补偿方法,该方法分为误差标定、误差建模和误差补偿三部分。首先,提出一种新的误差标定方法,将立体视觉结构光系统的测量空间划分为离散的特征点并标定了整个空间内特征点的误差;然后,提出了基于神经网络的误差建模方法,建立起该空间的误差模型;最后,提出了适用于立体视觉结构光系统的点云误差补偿方法,将建立的误差模型用于误差补偿。实验表明文章提出的误差补偿方法平均减少了51.96%的直径误差和14.16%的球心距误差,精度提升效果明显。从而,验证了该算法的有效性和可行性。  相似文献   

7.
针对零件的自动化测量环节,搭建了一套可用于工业流水线生产的零件多尺寸在线测量系统。首先,对经典的张正友相机标定方法进行了改进;其次,把边缘聚焦思想用于Canny算子实现了高精度的零件轮廓提取;然后根据相机的极线对齐理论,提出了基于极线阈值约束的灰度相关边缘匹配算法,获得零件轮廓点云图;最后,对目标点云数据拟合得到零件关键尺寸。整个过程基于高斯金字塔多分辨率技术来实现,在满足测量精度的前提下进一步提高了检测速度。经过多次实验测试,该系统具有测量精度较高、重复性误差小的优点,可以较好地完成零件的在线检测任务。  相似文献   

8.
针对激光雷达点云数据稀疏、扰动、存在噪声和其他方法难以迁移,实时性差等难题,面向“L”型小尺寸目标研究了一种基于视觉修正的激光雷达体积测量方法。该方法首先通过联合标定和时间戳最近邻匹配实现相机与激光雷达数据的对齐;然后经过目标检测算法获取图像中目标的信息,与此同时对点云数据执行地面分割得到地面点云与非地面点云,利用视觉投影和点云聚类实现目标点云的分割,使用KDtree找到目标点云附近的地面点云;最后,设计了一种三维框的拟合算法初步完成点云目标三维框的粗拟合,并建立视觉修正模型对于目标三维框进行细修正,从而实现目标体积的计算。实验结果表明,对于武器箱道具、医疗箱和油桶等“L”型物体,提出的算法在一定范围内,体积测量的平均相对误差小于4.44%、最大误差小于6.12%、最大重复性小于5.61%,并且基于视觉的修正模型大幅提高了算法的精度和稳定性,在嵌入式平台的处理1帧用时55 ms,能够实现实时高精度的体积测量,具有良好的工程应用前景。  相似文献   

9.
针对当前机器视觉的尺寸测量技术仍存在测量精度不足、难以满足精密测量需求等问题,设计了一套基于RANSAC算法的圆形轮廓高精度测量系统。首先对图片进行高斯滤波及阈值分割,完成边缘提取;然后使用基于RANSAC算法的最小二乘法进行直线和椭圆拟合,从而通过像素当量标定实现圆形轮廓的尺寸测量。实验表明,该系统能满足0.006 mm级别精度的工件测量,相对于传统算法,测量精度有显著提高。  相似文献   

10.
轮廓误差是评估数控机床动态性能的重要指标。定期检测和标定数控机床动态轮廓误差对于稳定机床加工精度至关重要。针对采用现有单一测量手段所测的动态轮廓误差轮廓范围小、维数低、轨迹形式受限等问题,提出基于双目视觉的机床轮廓误差测量方法,实现数控机床任意轨迹轮廓误差三维高精度测量。具体包括设计基于高精度强化特征和高均匀光照的便携式合作靶标以准确表征机床运动位置信息,实现靶标与工作台的高精度安装以及强化特征的高质量成像;利用偏心补偿算法准确定位强化特征图像二维位置,解决圆型强化特征成像仿射畸变为椭圆问题,提高图像处理与机床位置的视觉定位精度;提出基于相机成像全局建模的测量基准位姿变换方法,准确完成数据转换并求解机床轮廓误差。以五轴数控机床平面插补的三叶玫瑰轨迹为研究对象,搭建轮廓误差视觉测量系统并开展测量试验。以平面光栅测量结果为标准验证视觉求解精度。结果表明,在1 500 mm/min进给速度下视觉轮廓误差求解误差为9.79μm,平均测量误差为3.36μm。  相似文献   

11.
针对在复杂外部环境下激光雷达外参标定过程中遇到的标定板三维点云提取不准确的问题,提出一种基于背景聚类的激光雷达和相机外参标定优化方法,避免了在整个三维点云中盲目检测标定板点云,而导致标定结果存在较大误差以及需要人工手动纠正错误特征点的问题。该方法利用无标定板的背景点云与有标定板的目标点云之间部分空间域内的密度差异性,通过自适应空间阈值模型获得标定板点云与背景点云之间的差异系数K,然后聚类两点云中的部分三维点,完成标定板的三维点云提取。实验证明,该方法可以在复杂环境中准确高效地提取标定板三维点云,从而提高激光雷达和相机外参标定的准确性,在此基础上点云正确投影比例可达97.43%,与对比方法相比投影误差降低25.33%左右。  相似文献   

12.
针对多站激光雷达测量大型工件时站位布局与转站精度对测量结果影响大的问题,提出了基于最佳拟合的多站位点云数据匹配技术方案,通过计算数值化目标不确定度,约束公共靶点的误差范围,结合汽车框架几何外形特征完成靶标点分布设计,借助点云累计误差的统计分析完成最优站位选取。通过对单站、多站的标定测试实验,比较确定最优的三个站位组合,并在此基础上对汽车框架实物进行了三维扫描测量,定量计算了不同站位组合的目标重建精度。结果表明,本方法测试数据的角度不确定度最小,位置测量误差结果最优,最大误差为0.0418mm,平均误差为0.0063mm。因此,此技术具有更好的转站误差平差能力,对汽车框架等大型结构的精密测量具有一定的实用价值。  相似文献   

13.
高速列车动态包络线是指车体在运行过程中受各种不利因素影响所导致的最大极限轮廓。针对当前动态包络线测量系统存在标定过程繁琐、辅助设备不便携带、系统受场地因素制约严重等缺点,本文提出采用两个配置变焦镜头的高速相机作为测量系统的双目视觉传感器,设计并制作可快速重构的高精度三维靶标,通过共线性约束优化算法完成视觉传感器内参数和各空间位置关系参数的标定工作。该标定方法操作简单,标定设备便于携带,同时克服了双目相机与被测车体间严格的距离约束,增强了测量系统对复杂场地的适应性。实验表明,当双目相机距被测车体8-16 m 时,系统标定精度可达±0.5 mm,满足高速列车动态包络线的测量要求。  相似文献   

14.
提出了一种新的嵌入式时栅角位移传感器的自标定方法,以提高这类传感器在没有高精度母仪标定以及参数和工作环境发生变化时的测量精度。介绍了嵌入式时栅的特点,提出了利用两个间隔一定角度离散测头之间的误差规律变换来实现自标定的方法。设计了动态自标定系统,采用卡尔曼动态滤波算法来降低动态标定过程中传感器自身稳定性波动和环境干扰的影响。为了寻求最优参数以保证标定精度,提出了残差的控制算法。最后,运用设计的自标定系统对传感器进行了标定实验,并与以往母仪标定方法进行了对比。实验结果表明,传感器的误差从标定前±20″降低到±2.4″,标定参数与实际传感器误差成分相吻合,标定精度与以往母仪标定的精度基本相同,满足时栅传感器的标定要求。  相似文献   

15.
高速列车动态包络线是指车体在运行过程中受各种不利因素影响所导致的最大极限轮廓。针对当前动态包络线测量系统存在标定过程繁琐、辅助设备不便携带、系统受场地因素制约严重等缺点,本文提出采用两个配置变焦镜头的高速相机作为测量系统的双目视觉传感器,设计并制作可快速重构的高精度三维靶标,通过共线性约束优化算法完成视觉传感器内参数和各空间位置关系参数的标定工作。该标定方法操作简单,标定设备便于携带,同时克服了双目相机与被测车体间严格的距离约束,增强了测量系统对复杂场地的适应性。实验表明,当双目相机距被测车体8-16m时,系统标定精度可达±0.5mm,满足高速列车动态包络线的测量要求。  相似文献   

16.
空间点的立体视觉传感器标定方法   总被引:2,自引:1,他引:1  
陈刚  陈华  车仁生 《光学精密工程》2007,15(9):1439-1444
给出了一种基于随机空间点的立体视觉传感器高精度标定方法.该方法无需求解单个摄像机的内外参数,而是将立体视觉传感器透视变换矩阵中的元素作为未知量,当已知一组由高精度三坐标测量机提供的三维空间点坐标及其对应的图像点坐标时,即可利用奇异值分解法求解出各未知量的最小二乘解,从而避免了使用各类标定模板时由于加工和测量误差引入的标定误差.最后用标定过的立体视觉传感器对一组随机空间点进行三维坐标测量,与坐标测量机给出值进行比较表明,在误差最大的X轴方向,测量误差<0.05 mm,在Y轴和Z轴方向,测量误差<0.01 mm,证明了该方法的有效性.  相似文献   

17.
为了实现对特大钢结构的高效率、高精度检测,对地面激光点云整体配准算法以及无人机多视影像生成密集点云算法进行了研究。采用基于几何特征的可迭代整体配准算法不断对观测值进行约束定权和解算,将观测值改正数误差控制在一定阈值范围内,直到完成配准,生成整个网架结构的激光雷达点云模型。以球节点多连杆中心点算法对网架结构中的球结点与柱进行偏心计算,再使用基于视觉运动恢复结构算法以及改进的RANSAC算法生成的影像密集点云,通过配准实现地面激光点云和高分辨率非量测影像数据的融合。以某亚洲最大跨钢结构高精度检测为例,多站激光雷达点云整体的配准精度为5 mm,抽检的21根钢柱里16根柱子的偏差接近或大于35 mm(32.1~68.2 mm,方向均向外),整体钢结构的网架挠度均小于1/250。由此表明,地面激光点云整体配准算法以及高分辨率非量测影像数据密集点云生成算法可行且准确,能够满足特大钢结构的高精度检测要求。  相似文献   

18.
触针表面形貌测量系统具有高精度、高分辨率、稳定可靠和动态特性好等优点,在生产和科研中发挥着重要作用。但其杠杆结构造成的非线性误差,在大量程测量时会显著增大误差,影响测量精度。本文基于粒子自身的亲和力和浓度选择交叉变异提出一种新型粒子群算法,显著提高了粒子群算法的迭代速度和收敛精度。基于此粒子群算法可实现对触针表面形貌测量系统的非线性误差补偿,有效避免局部收敛,提高了补偿精度。经实验验证,通过高精度标准球冠进行标定测量,补偿误差在±0.5μm以内。  相似文献   

19.
针对地铁隧道侵限检测任务,提出了一种基于车载激光雷达的实时在线检测方法。利用主元分析法从隧道点云中分割出铁轨点云,依据铁轨点云建立限界模型,实时获取激光雷达扫描隧道生成的点云,根据设定的算法判断是否存在侵限。上述方法把三维问题映射到一维空间中,大大降低了计算量,为侵限检测的实时性提供了理论基础。利用简单的模型对复杂的空间进行建模,对不同环境下的侵限检测任务都有一定的参考意义。  相似文献   

20.
几何误差是影响球坐标测量系统精度的重要因素,误差补偿技术是提高其测量精度的有效方法。本文针对球坐标测量系统几何误差辨识及补偿问题,提出一种基于高精度球面靶标标定的误差辨识方法。首先,基于Denavit-Hartenberg方法建立球坐标测量系统误差模型;其次,分析基于高精度球面靶标标定的误差辨识原理;最后,运用该标定方法进行几何误差辨识仿真试验,并具体分析影响误差辨识精度的因素。仿真结果表明,基于高精度球面靶标的标定方法可以辨识出7项几何误差,经过误差辨识和补偿能够提高球坐标测量系统的球面面形测量精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号