首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate optical, structural and electrical properties of undoped GaN grown on sapphire. The layers were prepared in a horizontal reactor by low pressure metal organic chemical vapor deposition at temperatures of 900 °C and 950 °C on a low temperature grown (520 °C) GaN buffer layer on (0001) sapphire substrate. The growth pressure was kept at 10,132 Pa. The photoluminescence study of such layers revealed a band-to-band emission around 366 nm and a yellow band around 550 nm. The yellow band intensity decreases with increasing deposition temperature. X-ray diffraction, atomic force microscopy and scanning electron microscopy studies show the formation of hexagonal GaN layers with a thickness of around 1 μm. The electrical study was performed using temperature dependent Hall measurements between 35 and 373 K. Two activation energies are obtained from the temperature dependent conductivity, one smaller than 1 meV and the other one around 20 meV. For the samples grown at 900 °C the mobilities are constant around 10 and 20 cm2 V−1 s− 1, while for the sample grown at 950 °C the mobility shows a thermally activated behavior with an activation energy of 2.15 meV.  相似文献   

2.
We have grown indium oxide thin films on silicon substrates at low temperature by metal organic chemical vapor deposition. Polycrystalline film growth could only be obtained at temperatures below 400 °C. Above 400 °C, metallic indium deposition dominated. We have investigated the effect of substrate temperature and reactor pressure on the film growth and structural properties in the range of 250-350 °C and 5 ? 103-4 ? 104 Pa. The film grown at 300 °C exhibited a resistivity of about 3.6 × 10− 3 Ω cm and a maximal optical transmittance of more than 95% in the visible range. The film showed an optical band gap of about 3.6 eV.  相似文献   

3.
A zirconium oxynitride (ZON) thin film was deposited onto HT9 steel as a cladding material by a metalorganic chemical vapor deposition (MOCVD) in order to prevent a fuel-clad chemical interaction (FCCI) between a U-10 wt% Zr metal fuel and a clad material. X-ray diffraction spectrums indicated that the mixture of structures of zirconium nitride, oxide and carbide in the MOCVD grown ZON thin films. Also, typical equiaxial grain structures were found in plane and cross sectional images of the as-deposited ZON thin films with a thickness range of 250-500 nm. A depth profile using auger electron microscopy revealed that carbon and oxygen atoms were decreased in the ZON thin film deposited with hydrogen gas flow. Diffusion couple tests at 800 °C for 25 hours showed that the as-deposited ZON thin films had low carbon and oxygen content, confirmed by the Energy Dispersive X-ray Spectroscopy, which showed a barrier behavior for FCCI between the metal fuel and the clad. This result suggested that ZON thin film cladding by MOCVD, even with the thickness below the micro-meter level, has a high possibility as an effective FCCI barrier.  相似文献   

4.
X.C. Cao  Y.Q. Wang 《Thin solid films》2009,517(6):2088-6216
Influence of reactor pressure on the quality of GaN layers grown by hydride vapor phase epitaxy (HVPE) has been studied. With the reactor pressure decreasing from 7 to 5 × 104 Pa, improvements in structural, optical, and electrical properties of the GaN films have been observed.An investigation of the surface morphology of the GaN films reveals that the improvements arise from the change of the growth mode from an island-like mode at high pressures to a step-flow one at low pressures. These results clearly indicate that the reactor pressure, similar to the growth temperature, is one of the important parameters to control the qualities of HVPE-GaN epilayers.  相似文献   

5.
J.X. Zhang  Y. Qu  A. Uddin  S.J. Chua 《Thin solid films》2007,515(10):4397-4400
GaN epitaxial layer was grown on Si(111) substrate by metalorganic chemical vapor deposition (MOCVD). The structure consists of 50 nm thick high-temperature grown AlN buffer layer, 150 nm thick AlGaN layer, 30 nm low-temperature grown AlN layer, 300 nm GaN layer, 50 nm AlGaN superlattice layer, followed by 100 nm GaN epitaxial layer. The low-temperature AlN interlayer and AlGaN superlattice layer were inserted as the defect-blocking layers in the MOCVD grown sample to eliminate the dislocations and improve the structural and optical properties of the GaN layer. The dislocation density at the top surface was decreased to ∼ 2.8 × 109/cm2. The optical quality was considerably improved. The photoluminescence emission at 3.42-3.45 eV is attributed to the recombination of free hole-to-donor electron. The observed 3.30 eV emission peak is assigned to be donor-acceptor transition with two longitudinal optical phonon side bands. The relationship of the peak energy and the temperature is discussed.  相似文献   

6.
Planar nonpolar (112?0) a-plane GaN films have been grown by metalorganic chemical-vapor deposition directly on cone-shaped patterned r-plane sapphire substrates (PRSS) fabricated by dry etching. High-resolution X-ray diffractometers 2θ-ω scan confirmed that the films grown on PRSS are solely a-plane oriented, and the full width at half maximum values (FWHM) of the X-ray rocking curves for (112?0) GaN along [0001]GaN and [11?00]GaN were found to be 684 and 828″, respectively. As compared to the film grown on conventional r-plane sapphire substrate which typically has (112?0) omega FWHM values of 900 and 2124″ along [0001]GaN and [11?00]GaN respectively, the film grown on PRSS exhibits overall reduced omega FWHM values, and much smaller anisotropy behavior of crystallinity with respect to the in-plane orientation. The surface morphology is also improved by utilizing the PRSS technique. Cross-sectional transmission electron microscopy analysis shows that the density of threading dislocations has been greatly reduced from ~ 1.0 × 1010 cm− 2 above the flat sapphire regions to ~ 1.0 × 107 cm− 2 above the protruding cone patterns. The improvement of crystal quality and the increase of light extraction efficiency by using cone-shaped PRSS technique lead to a strong enhancement in the light emission of a-plane GaN films. These results indicate that growth of a-plane GaN films on cone-shaped PRSS shows promise for use in high-quality and high-cost-performance nonpolar GaN based devices.  相似文献   

7.
The electrical properties, deep-level spectra, microcathodoluminescence (MCL) spectra and diffusion lengths of minority charge carriers were measured in GaN films grown by the epitaxial lateral overgrowth (ELOG) technique. The results are compared to the properties of GaN layers grown in a standard fashion without masking of the initial template. MCL and electron beam induced current (EBIC) imaging of the laterally overgrown regions revealed the presence of dark spots with density of 1-5 × 106 cm− 2 that are associated with individual dislocations. The concentration of deep electron and hole traps was found to be much higher in the standard material than in the ELOG material. Diffusion lengths of minority carriers determined from EBIC signal profiling gave values of 0.8-1 μm along the bright regions and 0.4-0.5 μm in the dark regions of the ELOG samples. Similar measurements on metal organic chemical vapor deposition templates gave a diffusion length of 0.4-0.5 μm, close to the diffusion length in the dark stripes of the ELOG samples.  相似文献   

8.
Lithium phosphorus oxynitride (Lipon) thin films have been deposited by a plasma-enhanced metalorganic chemical vapor deposition method. Lipon thin films were deposited on approximately 0.2 μm thick Au-coated alumina substrates in a N2-H2-Ar plasma at 13.56 MHz, a power of 150 W, and at 180 °C using triethyl phosphate [(CH2CH3)3PO4] and lithium tert-butoxide [(LiOC(CH3)3] precursors. Lipon growth rates ranged from 10 to 42 nm/min and thicknesses varied from 1 to 2.5 μm. X-ray powder diffraction showed that the films were amorphous, and X-ray photoelectron spectroscopy (XPS) revealed approximately 4 at.% N in the films. The ionic conductivity of Lipon was measured by electrochemical impedance spectroscopy to be approximately 1.02 μS/cm, which is consistent with the ionic conductivity of Lipon deposited by radio frequency magnetron sputtering of Li3PO4 targets in either mixed Ar-N2 or pure N2 atmosphere. Attempts to deposit Lipon in a N2-O2-Ar plasma resulted in the growth of Li3PO4 thin films. The XPS analysis shows no C and N atom peaks. Due to the high impedance of these films, reliable conductivity measurements could not be obtained for films grown in N2-O2-Ar plasma.  相似文献   

9.
The liquid-delivery spin metal-organic chemical vapor phase deposition method was used to grow epitaxial sodium-bismuth-titanate films of the system Bi4Ti3O12 + xNa0.5Bi0.5TiO3 on SrTiO3(001) substrates. Na(thd), Ti(OiPr)2(thd)2 and Bi(thd)3, solved in toluene, were applied as source materials. Depending on the substrate temperature and the Na/Bi ratio in the gas phase several structural phases of sodium-bismuth-titanate were detected. With increasing temperature and/or Na/Bi ratio, phase transitions from an Aurivillius phase with m = 3 to m = 4 via an interleaved state with m = 3.5, and, finally, to Na0.5Bi0.5TiO3 with perovskite structure (m = ∞) were established. These phase transitions proceed at remarkably lower temperatures than in ceramics or bulk crystals for which they had been exclusively observed so far.  相似文献   

10.
The GaN film was grown on the (111) silicon-on-insulator (SOI) substrate by metal-organic chemical vapor deposition and then annealed in the deposition chamber. A multiple beam optical stress sensor was used for the in-situ stress measurement, and X-ray diffraction (XRD) and Raman spectroscopy were used for the characterization of GaN film. Comparing the characterization results of the GaN films on the bulk silicon and SOI substrates, we can see that the Raman spectra show the 3.0 cm− 1 frequency shift of E2(TO), and the full width at half maximum of XRD rocking curves for GaN (0002) decrease from 954 arc sec to 472 arc sec. The results show that the SOI substrates can reduce the tensile stress in the GaN film and improve the crystalline quality. The annealing process is helpful for the stress reduction of the GaN film. The SOI substrate with the thin top silicon film is more effective than the thick top silicon film SOI substrate for the stress reduction.  相似文献   

11.
We investigate low-temperature epitaxial growth of thin silicon films by HWCVD on Si [1 0 0] substrates and polycrystalline template layers formed by selective nucleation and solid phase epitaxy (SNSPE). We have grown 300-nm thick epitaxial layers at 300 °C on silicon [1 0 0] substrates using a high H2:SiH4 ratio of 70:1. Transmission electron microscopy confirms that the films are epitaxial with a periodic array of stacking faults and are highly twinned after approximately 240 nm of growth. Evidence is also presented for epitaxial growth on polycrystalline SNSPE templates under the same growth conditions.  相似文献   

12.
In this paper we report some preliminary results about the growth at low temperature (493 K) of hydrogenated silicon-carbon-oxygen-nitrogen amorphous thin-film alloys (a-SiCxOyNz:H) by means of capacitively-coupled radio-frequency (13.56 MHz) plasma-enhanced chemical vapor deposition using a mixtures of silane (SiH4), propane (C3H8), nitrous oxide (N2O) and ammonia (NH3) precursor gases. Thin films of a-SiCxOyNz:H were grown at different deposition conditions, obtaining growth speeds varying from 0.22 to 0.44 nm/s. The films were characterized by means of Fourier transform infra-red spectroscopy in order to investigate the internal bonding structure, by UV-VIS transmittance spectroscopy to check the optical properties and by mechanical profilometry to measure the film thickness and estimate the growth rate. The comparison of structural and optical properties of samples grown with and without NH3 presence in the gas mixture showed that the ammonia addition allows a better control of nitrogen incorporation in the film structure, while increasing film transparency and reducing the growth rate.  相似文献   

13.
Lithium niobate films grown epitaxially on sapphire substrate were prepared using a thermal chemical vapor deposition method from the metalorganic compounds Li(C11H19O2) and Nb(OC2H5)5. The range of operating conditions for obtaining pure epitaxially grown LiNbO3 without other oxides is within that for obtaining pure polycrystalline LiNbO3 grown on silicon substrate. On analyzing the composition of the epitaxially grown LiNbO3 film, the composition of the film was similar to that of the LiNbO3 solid solution in the phase diagram of the Li-Nb composite oxide obtained for crystal growth from a molten solution.  相似文献   

14.
化学气相沉积法制备无机分离膜   总被引:1,自引:0,他引:1  
介绍化学气相沉积(CVD)法在无机分离膜备方面的应用,以及近期此研究领域的一些进展。  相似文献   

15.
High-quality zinc oxide (ZnO) crystals were grown on a (0001) sapphire substrate by chemical vapor deposition at 830 °C under atmospheric pressure. The hexagonal crystals had an average diameter of about 150 μm, and a thickness of about 15 μm, as observed under a polarizing microscope. The large (0002) facet was flat, regular, and neat. In the X-ray diffraction pattern, strong (0002) and weak (0004) peaks indicate that the crystals had a wurtzite structure. The crystalline quality was characterized by Raman scattering, and the E2(high), E2(low), and Al(LO) modes confirm the high quality of the ZnO crystals. Photoluminescence (PL) spectra of the crystals had a strong and sharp ultraviolet emission peak at 379 nm. The PL mechanism was also discussed.  相似文献   

16.
Thin-film transistors deposited by hot-wire chemical vapor deposition   总被引:6,自引:0,他引:6  
In the past few years hot-wire chemical vapor deposition (HWCVD) has become a popular technique for the deposition of silicon-based thin-film transistors (TFTs). Several groups have been using hot-wire deposited amorphous and microcrystalline silicon as the active layers in TFTs. In such devices either thermal SiO2 or plasma-deposited silicon nitride was the gate insulator. Recently ‘All-Hot-Wire TFTs’ have been realized, with also the silicon nitride deposited by HWCVD. This paper reviews the characteristics of hot-wire TFTs with amorphous and microcrystalline silicon using plasma- or hot-wire deposited silicon nitride as the gate insulator. It has been shown that hot-wire TFTs have a higher stability upon gate-bias stress as compared to their plasma-deposited counterparts. We present an overview of the stability of hot-wire TFTs deposited at a range of substrate temperatures. The higher stability of hot-wire TFTs that have been deposited at temperatures of 400–500 °C is ascribed to an enhanced structural order, i.e. a higher degree of medium-range order of the silicon network.  相似文献   

17.
GaN layers grown onto sapphire substrates by metalorganic chemical vapour deposition were characterised by optical microscopy, transmission electron microscopy and atomic force microscopy measurements. Mirror like surfaces were obtained at certain growth conditions despite the hexagonal based pyramids found on the growth surface. The typical pyramids have a base diameter of 20–30 μm and height of about 1.5–3 μm. The GaN layers are of the wurtzite type and epitaxially oriented to the sapphire substrate. Beside the threading dislocations, hexagonal rods of GaN surrounded by inversion domain boundaries are observed. An AlN layer has been formed at the interface region during the nitridation process of sapphire.  相似文献   

18.
AlN thin films for acoustic wave devices were prepared by Microwave Plasma Enhanced Chemical Vapor Deposition under different process conditions, employing Si (100) and Pt (111)/SiO2/Si (100) substrates. The films were characterized by X-ray diffraction, Fourier transform infrared transmission spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. The values of the distance between the plasma and the tri-methyl-aluminum precursor injector, the radiofrequency bias potential, and the substrate temperature were central in the development of polycrystalline films. The choice of the chamber total pressure during deposition allowed for the development of two different crystallographic orientations, i.e., <0001> or <1010>. The film microstructures exhibited in general a column-like growth with rounded tops, an average grain size of about 40 nm, and a surface roughness lower than 20 nm under the best conditions.  相似文献   

19.
以带程序升温装置的管式电阻炉为实验装置,采用化学气相沉积法,在一定的工艺条件下裂解二茂铁与双鸭山精煤的混合物制备出多壁碳纳米管.采用透射电镜、Raman光谱以及X射线衍射技术对碳纳米管产物进行表征,同时研究了碳纳米管的生长机理.  相似文献   

20.
The technology of Hot Wire Chemical Vapor Deposition (HWCVD) or Catalytic Chemical Vapor Deposition (Cat-CVD) has made great progress during the last couple of years. This review discusses examples of significant progress. Specifically, silicon nitride deposition by HWCVD (HW-SiNx) is highlighted, as well as thin film silicon single junction and multijunction junction solar cells. The application of HW-SiNx at a deposition rate of 3 nm/s to polycrystalline Si wafer solar cells has led to cells with 15.7% efficiency and preliminary tests of our transparent and dense material obtained at record high deposition rates of 7.3 nm/s yielded 14.9% efficiency. We also present recent progress on Hot-Wire deposited thin film solar cells. The cell efficiency reached for (nanocrystalline) nc-Si:H n-i-p solar cells on textured Ag/ZnO presently is 8.6%. Such cells, used in triple junction cells together with Hot-Wire deposited proto-Si:H and plasma-deposited SiGe:H, have reached 10.9% efficiency. Further, in our research on utilizing the HWCVD technology for roll-to-roll production of flexible thin film solar cells we recently achieved experimental laboratory scale tandem modules with HWCVD active layers with initial efficiencies of 7.4% at an aperture area of 25 cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号