首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 890 毫秒
1.
基于CFD的离心泵小流量工况下扬程预测分析   总被引:2,自引:1,他引:1  
为了分析和提高小流量工况下离心泵CFD(computational fluid dynamics)扬程预测的精度,该文对一比转数为64的离心泵多个小流量工况下的内部流动进行了全流场定常多相位和非定常瞬态数值模拟。重点分析了定常多相位计算中的相位角和非定常计算中的时间步长对扬程预测结果的影响,并对比分析了定常多相位和非定常计算对扬程预测的优劣及其原因。研究结果表明,相位角对定常多相位数值计算的扬程预测结果影响很小;时间步长对基于非定常数值计算的扬程预测结果有较大影响。非定常数值计算的扬程预测精度远高于定常多相位数值计算的扬程预测精度,其相对误差都在2%以内。随着流量的减小,叶片与蜗壳的动静干涉作用也越来越明显。对小流量工况下离心泵扬程进行CFD预测,必须被考虑叶片与隔舌的动静干涉作用。  相似文献   

2.
工程中经常存在双吸离心泵实际扬程远高于输水系统所需扬程的情况,通常采用切削水泵叶轮以达到泵站节能的目的。为了研究叶轮切削对双吸离心泵水力性能的影响,该文采用RNG k-ε湍流模型对叶轮切削后的双吸离心泵外特性和内部流场进行了CFD分析,首次揭示了叶轮切削后的水力损失机理,包括损失的位置、大小和原因。研究发现,随切削量增加,性能曲线上最优效率点位置向小流量工况显著偏移,双吸离心泵的最优效率值逐渐下降。叶轮切削而增加的水力损失主要产生在叶轮内部,这是由于叶轮切削后,叶片对水流控制能力变弱致流道内漩涡增多,造成叶轮部分水力损失明显增加;而隔舌间隙增大并未使压水室内的水力损失明显增加。在叶轮切削量一定前提下,在大流量工况,数值预测的结果与相似换算理论值近似相等;当切削量超过4%时,在小流量工况,依相似定律换算得到的扬程和轴功率值低于CFD计算结果。  相似文献   

3.
多级离心泵轴向力的数值计算与试验研究   总被引:1,自引:1,他引:0  
轴向力的大小及平衡问题是影响离心泵可靠性、安全性以及效率的重要因素。由于不同的经验公式计算出来的轴向力大小相差很大,因此,找到一个离心泵轴向力精确计算的方法十分必要。该文通过对离心泵轴向力的理论分析,基于Fluent商用软件,采用标准k-ε湍流模型、SIMPLE算法对多级离心泵的内流场进行数值计算,分析离心泵内部流场的静压分布规律,并通过静压积分求得轴向力大小。对模型泵进行压力分布试验,获得14组流场的压力值及流量-压力、扬程-压力曲线,从而推导计算出轴向力大小。比较数值模拟与试验结果,压力值在小流量工况下相差较大,在设计工况下接近叶轮出口处模拟压力值与试验值基本吻合;轴向力的计算结果大体一致,最大误差仅为4.6%,在允许误差范围内。研究结论为离心泵的可靠性设计提供了新的思路和方法。  相似文献   

4.
低比转数离心泵的多目标优化设计   总被引:1,自引:7,他引:1  
为了提高IS50-32-160低比转数离心泵在设计工况下的扬程和效率,采用数值模拟、试验设计、近似模型和遗传算法相结合的优化方法,选取了泵叶轮的叶片出口宽度、叶片出口安放角和叶片包角3个参数作为设计变量,采用最优拉丁超立方试验设计方法进行20组方案设计,应用ANSYS CFX 14.5软件对各方案进行定常数值计算,得到设计工况下的效率和扬程,并将效率和扬程作为设计目标,根据Kriging近似模型建立了设计目标与设计变量之间的近似函数,采用遗传算法对近似函数进行求解,得到最优的叶轮参数组合。研究结果表明:原始方案的外特性数值模拟结果与试验结果吻合程度较好,设计工况下预测扬程偏差为3.3%;优化后的泵水力效率提高了4.18%,而且近似模型在预测性能的准确性高;通过对比原始方案和优化方案的内流场特性,优化方案内部流动得到改善,优化的叶轮的漩涡区域比原始方案的较小;优化使得效率在主频和次频下的脉动幅值分别下降了1.52和0.84,叶轮内的较大压力脉动强度区域减小,隔舌附近监测点在主频下的压力脉动系数幅值下降了0.02。非定常压力脉动强度降低,从而泵的运行稳定性提高。提出的优化设计方法对低比转数离心泵高效以及无过载特性的优化具有一定的参考意义。  相似文献   

5.
单流道离心泵定常非定常性能预测及湍流模型工况适用性   总被引:2,自引:2,他引:0  
为了评价计算流体动力学在单流道离心泵性能预测中的精度,以一台比转速为140的单流道离心泵作为研究对象,基于试验测试结果,对比分析了定常及非定常计算方法的性能预测结果,研究了标准k-ε湍流模型(Standard k-ε)、重正化群k-ε湍流模型(Renormalization group k-ε,RNG k-ε),标准k-ω湍流模型(Standard k-ω)和SST k-ω湍流模型(Shear stress transport k-ω,SST k-ω)4种湍流模型在单流道离心泵内流计算中的适用性,并分析了泵内的流动。结果表明,单流道离心泵内流的CFD计算应采用非定常方法;小流量工况下,单流道泵的内流CFD(Computational fluid dynamics)计算应采用SST k-ω模型,扬程、效率和功率偏差均比较小,分别为0.38%、3.12百分点和5.59%;设计工况和大流量工况下的内流计算应采用RNG k-ε模型,扬程预测偏差在3%以内,效率预测偏差在4个百分点以内,功率预测偏差在4%以内;小流量工况时,单流道叶轮叶片进口边下游压力面流道内出现较严重的流动分离和回流现象;单流道叶轮出口环面的低压区位置位于叶片出口边上游,且紧靠出口边。研究结果可为单流道离心泵CFD性能预测提供参考。  相似文献   

6.
离心泵快速变工况瞬态过程特性模拟   总被引:2,自引:2,他引:0  
为研究离心泵在不同工况点快速切换过程中的瞬态特性,该文以一台低比转速离心泵为研究对象,对其工况流量突然减小的瞬态过程,分别采用理论分析和数值计算的方式进行了外特性预测和内流场仿真研究。首先基于叶轮机械广义欧拉方程式,对离心泵模型在流量突然减小瞬态过程中的附加理论扬程进行了定量计算与分析。结果表明,同等条件下,变工况过程结束后的稳定流量越小,附加理论扬程越大,瞬态效应愈发明显;同时该瞬态过程后期的瞬态效应比前期更为明显。动静干涉效应对泵出口流动参数产生显著影响,而对泵进口流动参数的影响并不明显;动静干涉效应对小流量工况时各个流动参数的影响将尤为显著。叶片与隔舌相对位置最近时,计算扬程最小;当隔舌位于叶轮流道中间位置稍后时,计算扬程最大。同一个转动周期(T)内,选取叶片转过隔舌后的0.225 T和0.825 T位置进行单次定常计算可取得较高精度的数值预测结果。动静过流部件和粘性效应使得叶轮和蜗壳内的轴向速度分布规律完全相反。瞬态过程中流体加速效应使得瞬态流场演化整体上滞后于准稳态流场。  相似文献   

7.
为了阐明叶轮进口条件对串并联离心泵无过载性能的影响,该文从速度三角形理论出发,引入进口速度加权平均角度(θ),推导了单级模型泵无压直管叶轮进口条件的最大轴功率,以及相对应的流量的计算公式。在此基础上,研究了串并联离心泵分别应用无压半螺旋和有压半螺旋2种不同叶轮进口条件对无过载性能的影响。结合(computational fluid dynamics,CFD)技术,对各模型泵外特性曲线进行了数值模拟,并搭建试验台分别对单级模型泵和串并联离心泵进行试验。分析表明:计算结果与试验结果能够较好地吻合,在设计工况下,扬程误差和功率误差均在5%以内,从而验证了数值模拟结果的正确性。结果证明:不同叶轮进口条件下,得到的轴向速度分布均匀度变化不大,均匀度较好;而流动偏移角(γ)值有较大的差异,γ值越大越有利于无过载性能的实现。该研究结果为串并联离心泵的无过载研究和开发提供了一定的依据。  相似文献   

8.
基于CFD的潜水轴流泵性能分析及其特性试验   总被引:1,自引:1,他引:0  
为了研究高转速轴流泵性能预测问题,采用圆弧法和流线法完成550比转速QY90-4.4-1.5轴流式潜水泵叶轮和导叶水力设计。采用计算流体动力学(CFD)对泵性能进行预测,运用Pro/E软件完成泵流道三维实体造型和非结构网格划分,基于标准k-ε湍流模型进行泵内部流场数值模拟,得到模型泵性能预测数据和曲线。在样机型式试验及综合分析基础上,发现实测与预测性能参数吻合程度较高,由于对回流及二次流等的模拟还存在欠缺,在偏离额定工况较大时泵流量-扬程、流量-轴功率和流量-效率曲线产生一定的误差。通过分析最优工况叶片表面压力和相对速度分布,揭示叶片头部因液流撞击形成较大压降梯度,背面进口边稍后是较宽的低压汽蚀危险区。叶片表面速度沿半径逐渐增大,基本上没有径向分速度。总体符合速度环量沿半径均匀分布的假设。  相似文献   

9.
半开式离心泵变工况叶顶间隙的流动特性   总被引:1,自引:5,他引:1  
为研究不同工况下,叶顶间隙对半开式叶轮离心泵内部流场及外特性的影响,该文对某半开式叶轮离心泵内部三维湍流流场进行数值模拟。揭示了离心泵内不同工况下叶轮流道和叶顶间隙层内的流动规律,对比分析了4种不同流量工况下叶顶间隙泄漏涡的流动特性、叶顶间隙层总压与相对速度分布,以及流量的变化对离心泵外特性的影响。结果表明:在小流量(设计流量为1.5 m3/h)时,间隙层内充满了泄漏涡,随着流量的增加涡核逐渐减少;大流量时涡核几乎消失,但此时流体速度激增,流动冲击损失变大在叶轮出口与间隙层附近存在着大面积回流,小流量时回流几乎占据了整个出口。通过模型泵外特性试验,验证了数值计算的准确性。该文为离心泵叶顶间隙设计及水力优化提供了参考。  相似文献   

10.
低比转速离心泵内部流场分析及试验   总被引:8,自引:8,他引:0  
为了研究低比转速离心泵内部流动特性,对10种不同设计方案的低比转速离心泵进行了数值模拟和性能预测,讨论了叶轮和蜗壳的关键几何参数对内部流场和外特性的影响,分析了不同设计方案下泵内的静压、流线、速度和湍动能等分布,并针对复合式叶轮短叶片的分布位置和蜗壳喉部面积进行了对比试验。试验结果表明,该文优选的方案D,通过增加偏置短叶片后,扬程提高了5.5 m,效率提高了3.23%;增大蜗壳内部和喉部面积后,5种设计方案的额定点扬程均提高了约10 m,效率提高了约5%,且扩大了高效区范围。该研究将为低比转速离心泵的性能  相似文献   

11.
为使离心式长轴泵能够在不同工况下高效运行,该文以500GJC-32.3×3型离心式长轴泵为例,对其进行优化,首先根据传统方法估算离心式长轴泵叶轮参数,通过正交方法对离心式长轴泵叶轮进行优化设计,对正交试验结果进行极差分析,得到了叶轮几何参数对离心式长轴泵扬程和效率影响的主次顺序。综合考虑各参数对离心式长轴泵性能的影响,选取重要因素,基于不等扬程设计理论,采用控制变量法对叶轮进行多方案优化设计,对比不同方案计算结果可知:基于不等扬程理论优化设计的叶轮具有较好的水力性能,选择合适的后盖板无穷叶片数理论扬程系数,可使叶轮水力性能趋于最佳。对于该型离心式长轴泵,当后盖板无穷叶片数理论扬程系数取1.1时可获得较优的水力性能,对比较优方案的试验与计算结果可知:二者变化趋势相同,扬程、效率、轴功率的最大误差分别为4.02%、5.58%、3.59%,在(0.8~1.2)倍设计流量工况下,扬程、效率、轴功率的误差小。同时由试验可知:该型离心式长轴泵在设计流量时扬程大于97 m,效率高于82%,最高效率点出现在1.1倍设计工况附近为83.22%,曲线具有较宽的高效区和无过载特性,能够满足设计要求,在丰水期和枯水期均能高效稳定的运行,同时可降低电机的配套功率,减少一次成本投入。因此,该文的研究结果对离心式长轴的优化设计有较好的参考价值。  相似文献   

12.
针对工业生产中常见的节段式多级泵径向导叶和叶轮匹配程度较低的问题,该文借鉴面积比原理,利用数学关系给出了径向导叶正叶片参数确定的新方法。基于FLUENT软件,采用标准k-ε模型、SIMPLEC算法对径向导叶式离心泵单级叶轮与导叶进行了数值验证。结果表明:导叶喉部面积对离心泵性能影响重大,Anderson的面积比系数对导叶式离心泵偏大;正导叶参数的优化设计能提高离心泵的效率,该文设计的最优模型相比传统方法设计的模型,设计工况下扬程提高2.3m,效率提高1.6%,优化设计有效。该研究可为节段式多级泵的水力优化提供参考。  相似文献   

13.
为充分探究离心泵作透平专用叶轮叶片进口安放角的确定方法,该文建立了液力透平专用叶轮叶片进口安放角与设计流量的关系表达式;基于ANSYS Blade Gen与NX软件,分别设计了4个不同叶片进口安放角的透平专用叶轮;在试验验证基础上,通过全流场数值计算,分析了叶片进口安放角对透平外性能的影响。结果表明:叶片进口安放角从60°增大到72°、90°和105°时,透平高效点对应的流量分别为85、90、100和110 m3/h,4台透平数值计算最高效率点流量与理论计算设计流量基本吻合,表明采用该文推导的设计流量与进口安放角的关系式合理。外特性性能曲线显示随叶片进口安放角增大,透平高效点向大流量偏移,最高效率值有所下降,且下降的速率增大。综合考虑透平最高效率及高效区范围,对于比转速为193蜗壳式单级单吸离心泵反转作透平,叶片进口安放角宜设计在60°与90°之间。该研究可为液力透平专用叶轮设计提供参考。  相似文献   

14.
速度矩分布规律的参数化描述及对混流泵性能的影响   总被引:5,自引:4,他引:1  
邴浩  曹树良  谭磊  陆力 《农业工程学报》2012,28(13):100-105
为提升设计水平、改进混流泵叶片速度矩分布规律的给定,该文通过理论分析,对速度矩分布规律进行参数化表述,选取无量纲速度矩沿流线分布曲线的相对系数a0与速度矩分布曲线在叶片出口处的导数值P作为速度矩分布参数。基于混流泵叶轮正反问题迭代法设计平台,给定不同速度矩分布参数组合设计了一系列混流泵叶轮。基于SIMPLEC算法,通过求解N-S方程和RNGk-ε湍流模型方程,对混流泵叶轮内部三维湍流流场进行了模拟,获得了相对速度与压力分布,并预估了水力效率。研究表明,速度矩分布参数直接影响着叶片包角与出口边位置,进而影响到叶轮内部相对速度与压力的分布以及流动的稳定性。合理选择速度矩分布参数,有利于增强叶片对于流体运动的控制能力,改善叶轮内部压力分布,使叶轮具有更为优越的水力特性。该文提出的速度矩分布规律参数化方法,为混流泵叶轮设计过程中速度矩分布规律的给定提供了有益的借鉴。  相似文献   

15.
双向潜水贯流泵装置性能试验与数值分析   总被引:4,自引:3,他引:1  
该文针对城市防洪排涝泵站的特点,研发了2套双向潜水贯流泵装置,并采用CFD(computational fluid dynamics)技术计算了双向潜水贯流泵装置的内流场,分析了灯泡体段对泵装置正反向运行的影响,包括灯泡体段的水力损失、导叶体内部的流态及"S"形叶轮的水力性能,并经试验验证分析了数值计算结果的有效性。计算结果表明,反向运行时导叶体内部流态较好,反向运行工况优于正向运行;正向运行工况流量为4和5m3/s时,导叶体内均出现涡旋;灯泡体支撑件对"S"形叶轮的水力性能影响极小,但对泵装置水力性能影响较大;正向工况时"S"形叶轮所受轴向力小于反向工况。通过泵装置模型性能试验比较了2套泵装置的综合水力特性指标,并给出了供参考的潜水贯流泵装置的结构尺寸,其中导叶体扩散角为3°,灯泡体长度为2.43D、灯泡体直径为0.46D、泵装置总长为13.45D(D为叶轮名义直径),灯泡体采用流线型尾部及5片支撑件。  相似文献   

16.
低比速多级潜水泵优化设计   总被引:7,自引:5,他引:2  
按无过载设计要求,为大幅度提高效率,以QS10低比速潜水泵的优化为例,选择叶轮出口宽度、叶片进口冲角、叶轮叶片数、导叶进口安放角等10个参数为变化因素,按L27(310)正交试验方案设计了27组模型;研究了适合多级泵性能预测的方法;通过分析计算流体力学两级全流场数值模拟的结果,得到各几何参数对轴功率、效率指标影响的主次顺序:导叶叶片进口安放角β3对效率的影响最大,叶片出口安放角β2对轴功率的影响起主要作用;将正交分析所得到的最优方案制成样机进行性能测试,该优化模型泵额定点效率为58.61%(大于国家规定的效率值51%),最大轴功率值为3.83 kW(符合设计要求的4 kW),验证了正交设计结合数值模拟手段在泵优化设计方面的可行性。  相似文献   

17.
诱导轮时序位置对离心泵水力性能的影响   总被引:1,自引:1,他引:1  
对带有诱导轮的离心泵而言,诱导轮相对叶轮的时序位置非常关键。为探讨时序位置对整台离心泵性能的影响,该文以某单级离心泵为研究对象,采用三维黏性非定常数值方法,对诱导轮相对叶轮的3种不同时序位置下离心泵的内部流动进行了模拟,并分析了其外特性、振动特性、空化特性随时序位置的变化。结果表明:随诱导轮时序位置的变化,离心泵的扬程和效率都是先增大后减小,扬程变化达1.3%,效率变化达1.32%;诱导轮叶片尾部压力面的漩涡逐渐消失。时序效应对叶轮与径向导叶间的动静干涉有影响,从而影响叶轮所受径向力的分布及叶轮内部和径向导叶头部的压力脉动特性;合理的时序位置可以改善离心泵的空化性能。  相似文献   

18.
削剪泵轮叶片是优化液力变矩器性能的一种手段。为了研究泵轮叶片削剪程度对液力变矩器性能的影响规律,该研究基于计算流体动力学,采用应力混合涡湍流模型(stress-blended eddy simulation,SBES)对液力变矩器内部流场进行仿真模拟,依托外特性试验验证仿真结果的准确性。通过Q准则涡识别方法,甄选合适阈值重构叶片削剪前后泵轮流道三维涡系结构,定性分析多尺度涡动力学特性,量化提取二维流场图谱信息,揭示流速场时空演化规律。结果表明:泵轮叶片设计流线从出口处经过10%、20%和30%的削剪后,液力变矩器的变矩比逐渐增大,由原型变矩器的1.77增大到叶片削剪30%的2.33,泵轮转矩系数降幅明显,由原型变矩器的5.51降低到叶片削剪30%的3.39,叶片削剪10%后变矩比增大4.34%,泵轮转矩系数降低10.73%,降幅明显;随着泵轮叶片削剪程度加剧,叶片对流体的推动作用减弱,流体动能减小,多尺度涡运动趋势衰减,流道中部涡结构特征改变,流道出口高能小尺度“脱落涡”现象减弱;泵轮流道出口流速随叶片削剪程度增大而减小,由原型变矩器的23 m/s降低到叶片削剪30%的19 m/s,泵轮进口流速几乎不变,因进出口流速的变化,泵轮转矩系数降低。研究结果可为液力变矩器叶片设计与性能优化提供指导性建议。  相似文献   

19.
叶片厚度对轴流泵性能影响及内部流场分析   总被引:1,自引:1,他引:0  
为研究叶片厚度对轴流泵性能影响及其内部流场变化规律,该文采用圆弧法和流线法进行比转速550、转速2900r/min的QY90-4.4-1.5型潜水轴流泵水力模型设计,完成产品开发及样机型式试验。通过加厚叶轮叶片进行对比试验,阐明泵流量—扬程、流量—轴功率和流量—效率曲线产生差别的原因。采用计算流体动力学(CFD)方法进行叶片厚度对流场影响的数值计算,得到最优工况叶片表面相对速度分布和不同工况叶片表面静压分布。经过分析,阐明薄叶片总体性能优于厚叶片,但抗汽蚀性能可能劣于厚叶片。厚叶片翼型脱流、叶片进出口出现回流及二次流情况更为严重,水力损失较大,是泵效率等性能参数偏低的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号