首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
子孔径拼接干涉检测实验研究   总被引:15,自引:5,他引:10  
为了满足国内ICF系统大口径光学元件的检测需要,提出了子孔径拼接干涉检测的方法。该方法是利用小口径干涉仪对大口径光学元件进行高精度波前检测。建立了拼接检测计算的模型。利用最小二乘法计算得到拼接参数,从而恢复大口径光学元件的全孔径波前相位分布。在理论分析的基础上设计了一套检测装置,对该装置的稳定性进行了实验研究。进行了两口径拼接检测的实验。拼接结果与全孔径检测结果进行了比较。结果表明,该检测方案能够满足大口径光学元件的检测要求。  相似文献   

3.
刘智颖  张磊  胡原  高天元  王志坚 《应用光学》2008,29(6):1009-1012
大口径光学元件的检测开拓了子孔径拼接应用的新领域。采用小口径干涉仪对大口径被测元件不同区域进行波前检测,然后恢复计算出被测波前。使用光学设计软件ZEMAX对子孔径检测拼接技术进行了模拟,模拟结果表明:波前检测相对误差小于4.3λ‰,实现了对大口径光学元件面形的高精度检测,避免了相同口径检测干涉仪的使用,降低了检测成本及难度。  相似文献   

4.
基于子孔径拼接原理检测大口径光学元件   总被引:1,自引:0,他引:1       下载免费PDF全文
 为了实现小口径干涉仪对大口径光学元件的低成本、高分辨力检测,可采用子孔径拼接方法。在对拼接算法进行改进的基础上,开发了拼接检测软件;建立了一套拼接检测系统,开展了大口径平面光学元件的子孔径拼接检测实验研究。利用9个60 mm×60 mm子孔径拼接来检测120 mm×120 mm的光学元件,检测结果表明:峰谷值误差为2.37%,均方根值误差仅为0.27%。  相似文献   

5.
为了实现小口径干涉仪对大口径光学元件的低成本、高分辨力检测,可采用子孔径拼接方法。在对拼接算法进行改进的基础上,开发了拼接检测软件;建立了一套拼接检测系统,开展了大口径平面光学元件的子孔径拼接检测实验研究。利用9个60 mm×60 mm子孔径拼接来检测120 mm×120 mm的光学元件,检测结果表明:峰谷值误差为2.37%,均方根值误差仅为0.27%。  相似文献   

6.
大口径光学平面的子孔径拼接检验研究   总被引:2,自引:0,他引:2  
李新南  张明意 《光学技术》2006,32(4):514-517
研究了检测大口径光学平面的子孔径拼接法。通过采用最小二乘法对相邻两个子孔径重叠区域的数据进行分析,获得了子孔径之间的拼接参量,得到了被检验镜面的整体面形信息。编制了拼接检验的计算程序,并完成了原理性实验。采用一台口径为100mm的移相干涉仪检测了两个样品,给出了拼接检测与全口径检测的对比结果。样品的口径分别为100mm和91mm。对比检测结果表明,拼接检测与直接检测两种方法的RMS之差小于5nm。  相似文献   

7.
子孔径拼接干涉检测及其精度分析   总被引:8,自引:1,他引:7  
介绍了利用小口径干涉仪检测大口径光学元件的方法,从统计的角度出发,详细地推导了子孔径拼接干涉检测技术中拼接参量的具体求解过程,以及使用统计回归方法分析了拼接检测系统精度。并通过实验对该理论进行了实际分析运算。  相似文献   

8.
利用子孔径拼接法测量大口径凸面反射镜   总被引:1,自引:1,他引:1       下载免费PDF全文
王孝坤 《应用光学》2013,34(1):95-100
在简要分析各种检测大口径凸球面方法优缺点的基础上,提出了利用子孔径测量凸面反射镜的新方法,利用干涉仪标准球面波前依次干涉测定大口径镜面上各个区域的相位分布,通过子孔径拼接算法即可求解得到镜面全口径面形信息。对该方法的基本原理和实现步骤进行了分析和研究,建立了大口径拼接检测算法数学模型,设计并研制了大口径反射镜拼接检验装置。结合实例对加工过程中的口径为300 mm的碳化硅凸面反射镜进行了9个子孔径的拼接干涉测量,并将检测结果与全口径面形测量结果进行对比,两种方法残差的PV值和RMS值分别为0.102 和0.009 (=632.8 nm)。  相似文献   

9.
使用子孔径拼接法检测大口径光学元件   总被引:15,自引:4,他引:11  
为了解决大口径光学元件检测过程中成本高、空间分辨率低这两个主要难点 ,提出了使用小口径、高精度干涉仪分次检测大口径元件 ,然后通过优化算法将检测结果进行拼接处理 ,最终得到原大口径元件波前信息的方法 ,并作了初步的拼接模拟实验 ,确认了这一方案的可行性。  相似文献   

10.
使用环形子孔径拼接检测大口径非球面镜   总被引:2,自引:0,他引:2  
侯溪  伍凡  吴时彬  陈强 《光学技术》2005,31(4):506-508
针对高精度大口径非球面镜通常存在定量检验方法(补偿器法、全息法、自准直法)所需要的辅助元件制造困难、成本高这两个主要难点,利用不同曲率半径的参考球面波前来匹配被测非球面表面不同的环带区域,使它们之间的偏离量减小到在小口径干涉仪的测量范围内,每次测量仅是被测表面的一部分,通过算法"拼接"可得到全孔径的面形信息。给出了其拼接数学模型、参量求解方法及其精度评定判据。仿真分析表明,该技术是切实可行的,算法具有较高的拼接精度。该方法无需辅助光学元件就可实现对大口径、大相对口径非球面的直接测量,且具有很宽的适用范围。  相似文献   

11.
子孔径拼接法检验大口径光学镜面精度分析   总被引:1,自引:1,他引:1       下载免费PDF全文
张明意  李新南 《应用光学》2006,27(5):446-449
介绍子孔径拼接检测大口径光学镜面的原理,即用小口径的平面干涉仪检验大口径平面的一部分,通过改变2者相对位置获得覆盖到整个被检验镜面的子孔径检测数据。提出利用最小二乘法对相邻2个子孔径重叠部分的检测数据进行计算来确定实际所有子孔径之间的位置关系,进而得到拼接而成的整体面形信息。并对子孔径拼接成的面型与实际面型的误差进行分析,建立了对子孔径拼接全口径波面恢复精度的评价指标。根据子孔径拼接原理完成了实验,并对多组子孔径数据拼接后的波面恢复精度进行了分析。实验证明,子孔径拼接检测大口径光学元件综合误差小,重复精度高。  相似文献   

12.
实验研究了子孔径光学检测的拼接准确度.实验选取9个子孔径进行拼接,同时利用ZYGO干涉仪来测量子孔径和整个被检面的表面面形.实验发现,测量基准子孔径和整个被检面的时间间隔对子孔径拼接准确度的评价存在严重影响.为此,重点研究了产生影响的原因并提出了消除测量基准子孔径和整个被测面时间间隙影响的方法.最后,利用该方法研究了子孔径重叠面积对拼接准确度的影响.结果显示,当重叠面积比为7%时,PV和RMS的拼接误差分别为0.03λ(λ=632.8 nm) 和 0.01λ,并且重叠面积比和拼接准确度呈近似线性关系.  相似文献   

13.
子孔径拼接方法在大口径光学元件检测中发挥着重要的作用,关于子孔径拼接精度研究也受到广泛重视。子孔径斜率数据可由哈特曼探测器测得,被测光学元件上每个子孔径上的斜率数据通过最小二乘法进行拼接。测量过程中,测量数据不可避免含有随机噪声,这将影响拼接参数(如倾斜)的不确定度。推导了误差传递公式及评价拼接精度的公式,并分别计算了并行拼接和串行拼接中任意子孔径上每一点的拼接误差。在0.06s的随机噪声下,拼接斜率的统计误差与理论误差之间的差别在10-9 rad量级。模拟实验结果证实了所提出的拼接精度公式的正确性,可以用来评价拼接精度,并从理论上给出了并行拼接误差小于串行拼接误差的原因。  相似文献   

14.
为了无需其他辅助光学元件就能够实现对大口径非球面的测量,提出了子孔径拼接干涉检测方法。并基于齐次坐标变换、最小二乘法以及Zernike多项式拟合建立了综合优化和误差均化的拼接数学模型;开发了子孔径拼接检测非球面算法软件,进行了计算机模拟和仿真实验;设计和搭建了子孔径拼接干涉检测装置,并利用子孔径拼接实现了对口径为350mm的双曲面的检测;为了分析和对比,对待测非球面进行零位补偿检测实验,子孔径拼接所得的面形分布和零位补偿检测所得的全口径面形分布都是一致的,其面形误差PV值和RMS值的偏差分别为0.032λ和0.004λ(λ=632.8nm)。从而提供了除零位补偿检测外另一种定量测试非球面尤其是大口径非球面的手段。  相似文献   

15.
基于子孔径拼接的Hindle球检测法   总被引:1,自引:0,他引:1       下载免费PDF全文
闫锋涛  范斌  侯溪  伍凡 《强激光与粒子束》2012,24(11):2555-2559
为了能够准确获取基于子孔径拼接的Hindle球检测大口径双曲面镜的Hindle球参数,研究了Hindle球检测凸双曲面镜的理论模型,并从几何光学入手,讨论了基于子孔径拼接的Hindle球检测法的系统结构,推导了符合子孔径拼接要求的小口径Hindle球的参数计算式。对一个凸双曲面镜进行了在不同测量环带数目下的基于子孔径拼接的Hindle球检测法和经典Hindle球检测法的Hindle球参数对比。结果表明该Hindle球检测方法使Hindle球参数更合理。  相似文献   

16.
为减少环形子孔径拼接干涉检测中机械误差对检测结果造成的影响,分析环形子孔径拼接过程中机械误差作用分量的表现形式,提出了分离机械误差的全局优化的环形子孔径拼接方法。分析根据波像差理论建立的机械误差分离数学模型,然后将其应用于避免误差传递和累积的全局优化的拼接方法中,并提出利用光线追迹的方法在拼接之前除去理想非球面波前与参考球面波前的差别。应用分离机械误差的拼接方法对口径为75mm、顶点曲率半径为100 mm的抛物面面形进行检测,得到的面形峰谷值误差为0.05,均方根值误差为0.003,验证了该拼接方法可有效分离环形子孔径拼接中的机械误差。  相似文献   

17.
郑立功 《应用光学》2014,35(1):85-89
为了解决高精度光学反射镜的子孔径拼接检测问题,基于最小二乘拟合,依据拼接算法建立数学模型,编制了拼接程序,同时对口径为120 mm的平面反射镜进行了拼接检测。检测中,基于标记点确定子孔径间的相对位置,完成子孔径间的对准。分别基于全口径检测结果与自检验子孔径测试结果对拼接结果进行精度分析。实验结果表明:拼接结果无拼痕,拼接结果与全口径测试结果、自检验子孔径测试结果一致; 拼接结果与全口径面形测试的PV值与RMS值的偏差分别为0.020 与0.002 ,验证了检测的可靠性和准确性。  相似文献   

18.
为了解决高精度光学反射镜的子孔径拼接检测问题,基于最小二乘拟合,依据拼接算法建立数学模型,编制了拼接程序,同时对口径为Φ120 mm的平面反射镜进行了拼接检测。检测中,基于标记点确定子孔径间的相对位置,完成子孔径间的对准。分别基于全口径检测结果与自检验子孔径测试结果对拼接结果进行精度分析。实验结果表明:拼接结果无“拼痕”,拼接结果与全口径测试结果、自检验子孔径测试结果一致; 拼接结果与全口径面形测试的PV值与RMS值的偏差分别为0020 λ与0002 λ,验证了检测的可靠性和准确性。  相似文献   

19.
张敏  隋永新  杨怀江 《中国光学》2014,7(5):830-836
子孔径拼接干涉仪中子孔径定位精度难以在大行程范围内得到保证,为此本文提出了基于提取标记点中心定位子孔径的拼接方法。以标记点的中心坐标为标记点坐标,根据标记点在两子孔径局部坐标系下的坐标计算两子孔径之间的坐标变换,将所有子孔径数据坐标变换到统一坐标系下,利用机械误差补偿算法拼接出全口径面形。在搭建的拼接检测系统上实现了外径468 mm的平面镜抛光过程和最终的全口径面形测量,加工过程中的测量结果为面形误差修正提供了准确的数据,保证了最终全口径面形误差RMS快速收敛到35 nm。实验证明,基于提取标记点中心的子孔径拼接检测能放宽对机械定位精度的要求,有效检测大口径光学元件面形。  相似文献   

20.
子孔径拼接干涉检测中去倾斜处理技术   总被引:3,自引:3,他引:0       下载免费PDF全文
 倾斜放置对大口径光学元件的检测有很大影响,为了防止在子孔径拼接干涉检测中倾斜所导致的数据丢失等严重后果,并且实现不同次检测的结果可以相互比较,提出了一种软件修正倾斜量的方法。通过对读出的图形数据进行反向倾斜来降低检测中的元件倾斜程度,避免了实际检测过程中手工操作无法达到极小角度修正的困难。通过实验,验证了该方法的可行性和有效性,实现了大口径光学元件正确的子孔径拼接检测,完成了多次检测结果之间的相互比较,结果表明,残差平均值仅为0.12λ(λ=633nm)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号