首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王岩  高锦枫  张浩  逯忠斌 《农药》2007,46(9):618-619,629
建立了除草剂异丙草胺在大豆和土壤中的残留分析方法。样品用甲醇与水的混合液提取,石油醚萃取,柱层析净化,GC-μECD检测,方法最小检出量为7.4×10-12g。土壤、大豆植株和籽粒中最小检测质量分数均为0.0018mg/kg,在添加水平分别为0.01、0.1、1.0mg/kg时,样品中的异丙草胺在土壤、大豆植株和籽粒中的添加回收率为分别为81.3%~96.7%、81.2%~92.5%、82.2%~92.1%,变异系数为1.60%~3.07%。  相似文献   

2.
本文提供了实验室少量重氮甲烷的制备方法,即用水合肼代替亚硝基胍在密闭装置中进行;并改进了AOAC推荐的羧氟草醚残留分析方法,即用0.06N氢氧化钾溶液代替乙腈提取样品,省去甲苯萃取和正庚烷洗涤。  相似文献   

3.
《农药》2016,(1)
[目的]为评价丙草胺在水稻中使用的安全性,开展丙草胺在水稻和土壤中的残留量及残留降解研究。[方法]进行2年3地田间试验。消解动态试验按丙草胺1462.5 g/hm~2(585 g a.i./hm~2,推荐最高剂量的1.5倍)施药;最终残留试验按丙草胺1462.5 g/hm~2(585 g a.i./hm~2,推荐最高剂量的1.5倍)和975 g/hm~2(390 g a.i./hm~2,推荐最高剂量)施药,收获期采样。气相色谱法(带电子捕获检测器)对丙草胺进行定量分析。[结果]田间消解动态试验表明:丙草胺在田水和土壤中消解较快,半衰期分别为0.6~3.3、3.8~7.5 d。糙米和土壤中丙草胺的最终残留量低于0.01 mg/kg,稻壳和稻秆中丙草胺的最终残留量低于0.02 mg/kg。  相似文献   

4.
氟黄胺草醚合成方法综述   总被引:1,自引:0,他引:1  
一、前言氟黄胺草醚是一种选择性除草剂,用于防除萌发后大豆田的阔叶杂草。据黑龙江、吉林、辽宁、江苏等地试验评价,认为该品种是目前防除大豆田阔叶杂草最好的除草剂品种之一。国内目前每年都有一定数量的进口,但仍不能满足要求。氟黄胺草醚是英国ICI公司八十年代初期开发的新品种,通用名称为:fomesafen、商品名称为“虎威”(Flex),试验代号PP021,其化学结构式为:  相似文献   

5.
张浩  王岩  逯忠斌 《农药》2007,46(8):544-545,556
为了制定糖草酯在大豆上的安全使用标准,采用田间试验方法,研究了糖草酯在大豆及土壤中的残留动态,应用HPLC测定了糖草酯在大豆及土壤中的残留量.两年的试验结果表明,糖草酯在土壤和植株中半衰期分别为1.8~2.4 d和0.63~0.69 d;在大豆植株中的消解速度要快于土壤;大豆收获期土壤和籽粒中的残留量均低于各自检出极限0.005 mg/kg和0.01 mg/kg.从吉林和黑龙江两个试验点的残留量测定结果看,糖草酯在土壤和大豆鲜植株中的消解较快,具有相似的消解规律.  相似文献   

6.
叶倩  朱富伟  王富华  黄玉芬  赵晓丽  唐雪妹  万凯 《农药》2020,59(5):362-366,374
[目的]建立了菊花中氟啶胺的液相色谱-串联质谱(QuEChERS-UPLC-MS/MS)分析方法,并在安徽、浙江、江苏和广西4地进行了500 g/L氟啶胺悬浮剂在菊花上残留的田间试验,研究了氟啶胺在菊花中的消解动态和最终残留量,并对菊花中氟啶胺可能产生的膳食摄入风险进行了评估。[方法]菊花样品经乙腈提取,以C18色谱柱分离待测物,采用ESI源,负离子模式和多反应监测模式(MRM)检测,外标法定量。[结果]在0.001~1.0 mg/L质量浓度范围内氟啶胺线性关系良好,相关系数大于0.9936;在0.010、0.10、0.50 mg/kg 3个质量分数下,菊花中氟啶胺的回收率为81.4%~92.5%,相对标准偏差(RSD)为1.6%~6.4%,检出限(LOD)为0.011~0.040μg/kg,方法定量限(LOQ)为添加的最低质量分数0.010 mg/kg。田间试验结果表明:氟啶胺在菊花中消解符合一级反应动力学方程,半衰期为3.5~3.9 d,属易降解农药;使用500 g/L氟啶胺悬浮剂,施药剂量300~450 g a.i./hm2,分别施药2、3次,距末次施药后14 d,菊花鲜样的残留量低于同期干样的残留量。[结论]膳食摄入风险评估结果表明:氟啶胺的风险概率为每人每日摄入总量的77%,表明在菊花生长期间按照推荐剂量使用氟啶胺对消费者的膳食健康风险较低,对消费者健康是安全的。  相似文献   

7.
丁醚脲在棉花及土壤中的残留消解动态   总被引:1,自引:0,他引:1  
[目的]为评价丁醚脲在棉花上使用后的环境安全性,在商丘和杭州2地进行了其在棉花上的残留动态和最终残留试验。[方法]样品用乙腈提取,乙酸铵和NaCl液液分配,PSA结合GCB净化,后经LC-MS/MS测定其残留量。[结果]丁醚脲在棉叶上的半衰期为0.8~1.1 d;在土壤中的半衰期为1.4~1.9 d;最后1次施药后间隔7、14、21 d棉籽中丁醚脲的残留量均≤0.005 mg/kg。[结论]建议13%联苯·丁醚脲乳油防治棉花红蜘蛛,在推荐剂量下最多施药1次,安全间隔期为7 d。  相似文献   

8.
曹明坤  王文相 《农药》1997,36(4):37-38
试验结果表明50毫长/667米^2氟黄胺草醚能有效地控制大豆田茼麻和青葙子。40-50毫升/667米^2高恶唑禾灵防除大豆田野称和芒稷可达满意效果;乳氟禾草灵不宜与高恶唑禾灵混 用,否则会诚效增毒。  相似文献   

9.
建立了嘧啶肟草醚在土壤、植株和大米中的液相分析方法.该方法的最小检出量为1×10-9g,最低检测质量分数为0.02 mg/kg,在土壤中平均添加回收率为86.4%~90.4%,相对标准偏差为1%~8%;在植株中的平均添加回收率为80.6%~89.1%,相对标准偏差为4%~8%;在大米中平均添加回收率为86.4%~95.2%,相对标准偏差为2%~9%;灵敏度、精密度和准确度均符合农药残留分析的要求.  相似文献   

10.
赵云和  杨靖华  段玉玺  陈立杰 《农药》2007,46(10):696-698
采用高效液相色谱检测土壤中咪草烟残留动态。以乙腈-水-乙酸(体积比45∶54.1∶0.9)作为流动相,该方法咪草烟在土壤中的回收率为83%~88%,最小检出质量分数为0.02mg/kg。该方法操作简单,定量准确,与其它方法比较易于推广应用,适于土壤残留的常规分析。  相似文献   

11.
氟环唑在香蕉和土壤中的残留消解动态   总被引:1,自引:0,他引:1  
[方法]采用田间试验方法研究氟环唑在香蕉和土壤中的残留与降解情况。气相色谱氮磷检测器进行定量分析。[结果]研究结果表明:氟环唑的降解符合一级动力学方程,在香蕉和土壤中半衰期分别为7.2~9.9、8.0~10.0 d。按施药剂量为150 mg a.i./kg,施药3次,距最后1次施药间隔42 d计算,测得香蕉和土壤中氟环唑残留量为0.01~0.09 mg/kg。[结论]测得的残留量低于美国规定的MRL值(0.5 mg/kg),不会对香蕉和土壤造成残留污染。  相似文献   

12.
试验结果表明50毫升/667米2氟黄胺草醚能有效地控制大豆田苘麻和青葙子;40~50毫升/667米2高唑禾灵防除大豆田野黍和芒稷可达满意效果;乳氟禾草灵不宜与高唑禾灵混用,否则会减效增毒。  相似文献   

13.
[目的]通过2年3地的水稻田间试验,研究了50%噻虫胺水分散粒剂在水稻和土壤中的残留及消解动态。[方法]利用QuEChERS-HPLC-MS/MS法。[结果]噻虫胺在水稻植株、土壤、田水中的消解动态符合一级反应动力学方程。2016年安徽植株、田水、土壤中半衰期分别为7.5、5.6、6.5d;辽宁分别为8.7、3.4、8.1d;浙江分别为5.3、7.8、13.3d;2017年安徽植株、田水、土壤中半衰期分别为6.5、4.3、23.9d;辽宁分别为5.5、5.4、11.7d、浙江分别为9.0、7.7、27.7d。当50%噻虫胺水分散粒剂以120、180ga.i./hm2 2个剂量分别施药2~3次,施药间隔30d时,噻虫胺在水稻植株、糙米、土壤中的最终残留量小于0.07mg/kg。[结论]噻虫胺属于易降解农药,在糙米的最终残留量小于我国制定的噻虫胺在糙米中的最大残留限量0.2mg/kg。  相似文献   

14.
《农药》2015,(3)
[目的]建立并优化了土壤中草铵膦的高效液相色谱/荧光检测器分析方法。[方法]土壤样品经水进行提取,提取液用氯甲酸-9-芴基甲酯(FMOC-Cl)进行衍生化,用乙酸乙酯对衍生化溶液进行萃取净化;Luna氨基色谱柱进行分离,水相直接进HPLC进行分析检测。[结果]土壤中添加0.10~10.0 mg/kg,添加回收率为79.9%~86.3%,相对标准偏差为1.81%~6.87%。[结论]方法准确、灵敏。用该检测方法对贵州、广西的农田土壤中草铵膦的降解进行了研究,结果表明草铵膦在2地的降解半衰期为1.4~1.5 d。  相似文献   

15.
本文报道了乙从氟草醚除草剂在稻株、稻谷、土壤和田水中的残留分析方法。样品以甲醇提取,活性比炭-硅镁型吸附剂-氧化铝层析柱净化,气谱(GC/ECD)检测。乙氧氟草醚的囊低检出量为1×10 ̄(-12)克,在稻株、稻谷、土壤和田水中的最低检出浓反分别为0.005、0.01、0.005、0.0001毫克/公斤。空白样品添加标准回收率试验,三档浓度平均回收率为101.3%,变异系数为3.6%。  相似文献   

16.
《农药》2015,(1)
[目的]研究灭草松在大豆及土壤中的残留消解趋势,评价其在大豆上使用的安全性。[方法]采用液相色谱(HPLC)对31%灭草松·三氟羧草醚·氟磺胺草醚微乳剂在3地大豆和土壤中的残留消解动态和最终残留进行了研究。[结果]灭草松在大豆植株中的半衰期为0.7~7.2 d,在土壤中的半衰期为1.8~8.6 d。大豆苗后施药,在收获期采收的鲜食青豆和成熟大豆中残留量都低于最低检出限0.02 mg/kg。[结论]灭草松按照推荐方法和剂量使用,在大豆上使用是安全的。  相似文献   

17.
《农药》2015,(7)
[目的]明确醚菊酯和吡虫啉在水稻及土壤中的残留动态。[方法]建立一种同时检测稻田土壤和水稻中醚菊酯和吡虫啉残留量的高效液相色谱法。[结果]醚菊酯和吡虫啉的残留动态及其在土壤中消解的影响因子研究表明:在0.10~10.00 mg/L范围内,醚菊酯和吡虫啉的峰面积与其质量浓度间呈良好的线性关系。在0.01、0.1、1 mg/kg 3个添加水平下,醚菊酯与吡虫啉的平均回收率为75.03%~100.53%。供试条件下,醚菊酯与吡虫啉在灭菌土壤中的半衰期分别为未灭菌土壤的2.09、2.40倍;土壤中醚菊酯和吡虫啉的消解速率随土壤温度的增加而加快,随施药剂量的增加而减缓。田间试验结果表明,醚菊酯和吡虫啉在水稻植株中的半衰期分别为6.21、3.56 d;在稻田土壤中的半衰期分别为8.10、4.55 d,均属于易消解农药(t1/230 d)。[结论]推荐使用1.7 g/667m2 70%吡虫啉水分散粒剂和59.5 m L/667m210%醚菊酯悬浮剂混配(有效成分之比1颐5)防治水稻褐飞虱,其防效高,且安全性好。  相似文献   

18.
噻虫胺在甘蔗和土壤中的残留分析及消解动态   总被引:1,自引:0,他引:1  
建立了采用高效液相色谱测定甘蔗及土壤中噻虫胺的残留分析方法,并测定了噻虫胺在甘蔗植株、茎秆及土壤中的消解动态和最终残留。甘蔗茎秆及植株样品用丙酮提取,乙酸乙酯萃取后,再经硅胶柱净化,HPLC测定。土壤样品经乙腈提取后,HPLC检测。结果表明:噻虫胺最小检出量(LOD)为6.80×10-13 g,甘蔗茎秆、植株和土壤中最低检测浓度(LOQ)均为0.05mg/kg。甘蔗茎秆和植株中均未检测到噻虫胺,噻虫胺在土壤中的消解行为符合一级降解动力学方程,半衰期为24.3~26.4 d。建议噻虫胺在甘蔗上的有效成分用量不超过472.5 g/hm2。  相似文献   

19.
啶酰菌胺在番茄和土壤中的残留及消解动态   总被引:3,自引:0,他引:3  
[目的]为啶酰菌胺的安全合理使用提供依据。[方法]建立了啶酰菌胺在番茄和土壤样品中的残留检测方法,并利用该方法研究了啶酰菌胺在番茄和土壤中的降解动态和最终残留。[结果]方法的准确度和精密度符合残留检测要求,啶酰菌胺在番茄中半衰期为7.6~11.7 d,土壤中的半衰期为5.7~18.2 d,以推荐剂量的高剂量施药后,啶酰菌胺在番茄中的残留量均低于MRL值。[结论]按照推荐方法施药,啶酰菌胺在番茄上的使用相对安全。  相似文献   

20.
[目的]建立并优化马铃薯和土壤中氯氟醚菌唑的高效液相色谱-串联质谱(HPLC-MS/MS)残留检测方法,且用该方法检测氯氟醚菌唑在马铃薯和土壤样品中的消解动态。[方法]样品经0.1%甲酸乙腈溶液提取,PSA、GCB和无水MgSO4混合净化,外标法定量,液相色谱三重四极杆质谱分析检测。[结果]在马铃薯块茎、马铃薯植株和土壤样品中的氯氟醚菌唑均在0.002~1 mg/L质量浓度范围内呈现良好线性(r>0.9990);在0.01~0.5 mg/kg添加质量分数内,马铃薯块茎样品中的氯氟醚菌唑平均回收率为90.3%~103.0%,相对标准偏差(RSD)为2.3%~11.8%;0.01~5 mg/kg添加质量分数内,马铃薯植株和土壤样品中的氯氟醚菌唑平均回收率分别为73.4%~84.1%和82.5%~105.3%,相对标准偏差(RSD)分别为2.8%~7.5%和1.6%~8.4%。氯氟醚菌唑的定量限(LOQ)为0.01 mg/kg。消解动态试验结果表明,氯氟醚菌唑在马铃薯块茎、马铃薯植株和土壤中的消解动态符合一级动力学方程,半衰期分别为7.1~15.3、3.8~10.3、10.5~21.2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号