首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
用溶液共混法制备出聚偏氟乙烯/氧化石墨烯复合材料(PVDF/GO),经高温热压将GO还原得到聚偏氟乙烯/还原氧化石墨烯复合材料(PVDF/rGO)。研究了填料种类及含量对复合材料电学性能、热稳定性和力学性能的影响。结果表明:随GO和rGO的添加,两种复合材料的介电常数(ε r)均变大、介电损耗(tanδ)变化不大;低含量下GO和rGO均能提高PVDF的热稳定性,但rGO对PVDF性能的改善效果更好;随填料含量从0增加到8%(质量),100 Hz下PVDF/rGO复合材料的ε r从3.60增加到38.30,PVDF/rGO[4%(质量)]复合材料失重率为5%的分解温度较纯PVDF提高了6.44℃。rGO增强了PVDF的刚性,PVDF/rGO复合材料的拉伸强度先增大后减小,杨氏模量逐渐增大,当rGO含量为4%(质量)时拉伸强度最大,拉伸强度和弹性模量分别较纯PVDF提高了35.30%、22.58%。但GO和rGO都降低了复合材料的击穿场强。  相似文献   

2.
采用熔融共混法制备了乙二胺(EDA)共价功能化改性石墨烯片(GO-EDA)/酸化碳纳米管(MWNTsCOOH)/高密度聚乙烯接枝马来酸酐(HDPE-g-MAH)复合材料。通过拉伸测试、冲击测试,扫描电镜(SEM)、动态机械分析(DMA)及热重分析(TGA)研究了杂化填料(GO-EDA/MWNTs-COOH)对HDPE-g-MAH的协同增强-增韧效应及耐热稳定性能的影响。结果表明,杂化填料的加入明显提高了复合材料的力学性能,与纯HDPE-gMAH相比,当杂化填料的质量分数为0.5%时,拉伸强度提高了16%;杂化填料的质量分数为0.75%时,冲击强度提升了20%。杂化填料在基体中获得均匀分散。加入杂化填料后复合材料的储能模量较基体增大,损耗模量峰值向高温方向移动,复合材料的耐热稳定性能提高。  相似文献   

3.
以聚偏氟乙烯(PVDF)为基体,以酸化多壁碳纳米管(MWCNTs-COOH)为功能性纳米填料,通过熔融共混法制备了不同MWCNTs-COOH含量的PVDF/MWCNTs-COOH复合材料。分别采用傅立叶变换红外光谱(FTIR)、X射线衍射(XRD),差示扫描量热(DSC),扫描电子显微镜(SEM)、拉伸性能、硬度及维卡软化点温度测试对复合材料结构、微观形貌、力学性能、熔融与结晶行为及耐热性能等进行了测试和表征。FTIR测试表明,MWCNTs被混酸成功酸化成MWCNTs-COOH,有利于增强PVDF与MWCNTs-COOH之间的界面相互作用。XRD测试表明,随着MWCNTs-COOH的加入促进了PVDF的β晶的生成。SEM分析表明,当MWCNTs-COOH质量分数为1.0%时,MWCNTs-COOH被PVDF包覆并均匀地分散到基体中。DSC测试表明,MWCNTs-COOH的加入提升了复合材料的结晶温度、熔融温度和结晶度。当MWCNTs-COOH质量分数为1.0%时,PVDF/MWCNTs-COOH复合材料的拉伸强度可达到60.2MPa,较纯PVDF提高了10.5%,断裂伸长率、邵氏A硬度和维卡软化点温度分别为124%,82.7和161℃。  相似文献   

4.
《塑料科技》2017,(3):38-44
经溶液共混法成功制备了离子液体改性热还原氧化石墨烯/三元共聚尼龙(IL-TRGO/CO-PA)纳米复合材料,测试分析表明IL-TRGO能明显改善纳米复合材料的性能。XRD和SEM分析表明:当TRGO的含量不高于0.75%时,IL-TRGO片层可以均匀地分散在CO-PA基体中。DSC和TGA分析表明:IL-TRGO能够提高纳米复合材料的结晶温度和热稳定性,但降低了其玻璃化转变温度。力学性能测试表明:TRGO能够提高复合材料的力学性能,当TRGO含量为0.5%时,纳米复合材料的拉伸强度、屈服强度和断裂伸长率分别提高了82.1%、129%和22.7%;当TRGO含量为0.75%时,纳米复合材料的屈服强度提高了161.6%。  相似文献   

5.
以石墨烯(GE)和氧化铝(Al_2O_3)为导热填料,三元共聚尼龙(CO-PA)为基体,硅烷偶联剂KH-550为表面改性剂,通过溶液共混的方法制备了石墨烯/氧化铝/三元共聚尼龙导热复合材料。XRD和SEM分析表明,GE、Al_2O_3的加入改变了尼龙的结晶晶型; DSC与TGA分析表明,GE与Al_2O_3的填料体系降低了尼龙的结晶性能,同时复合材料的热稳定性得到提高;热导率测试结果表明,填料的添加使复合材料的热导率得到较为明显的提高,当Al_2O_3的添加量为50%,GE添加量8%时,复合材料的热导率提高了8. 8倍;力学测试表明,低含量的导热填料能够提高复合材料的力学性能,当Al_2O_3添加量为50%,GE含量为1%时,复合材料的屈服强度提高了62. 1%,当Al_2O_3添加量为30%时,复合材料的拉伸强度提高了21. 2%。  相似文献   

6.
论文通过溶液共混法制备了化学共价功能化改性石墨烯片(f GO)掺杂的聚亚苯基砜(PPSU)纳米复合材料(PPSU/f GO)以改善PPSU的力学性能、热性能和电性能。所得材料分别通过红外光谱(FT-IR)、原子力显微镜(AFM)、X射线衍射(XRD)、扫描电子显微镜(SEM)、热重分析(TGA)、力学和电学性能测试表征了化学共价功能化改性对石墨烯的影响,以及f GO的含量对PPSU/f GO纳米复合材料的力学性能、热性能、导电性能及断面形貌的影响。研究结果表明:氧化石墨烯已成功获得功能化改性,其在溶剂中能均匀分散和剥离,厚度约为70 nm左右;加入少量的f GO(如≤1%(wt)时,f GO的分散尺寸较小,在基体中分散较均匀,并与PPSU基体有良好的界面结合,可有效发挥f GO对PPSU的增强增韧作用。PPSU/f GO纳米复合材料有较好的力学性能,其中以1%(wt)的f GO含量为最佳,其纳米复合材料的拉伸强度和抗冲击强度分别为207 MPa和72 k J?m-2,比纯PPSU分别提高了约15%和14%。当f GO含量过高时,f GO分散尺寸增大,与PPSU基体界面作用减弱,导致复合材料拉伸强度和抗冲击性能下降。随着f GO含量的增加,PPSU复合材料耐热稳定性能提高。电性能测试表明,当加入1%(wt)的f GO时,复合材料的电导率提高了近8个数量级,其导电逾渗阀值小于1%(wt)。综合考虑复合材料的力学和电性能,f GO的添加量低于1%(wt)为宜。  相似文献   

7.
张晓玲  张国  陈立  焦莎 《塑料》2014,43(5):42-44
以石墨纤维(GF)、乙炔炭黑(CB)为导电填料,聚偏氟乙烯(PVDF)为基体,通过熔融共混方法分别制备GF/PVDF、CB/PVDF导电复合材料。讨论了导电填料形状、含量对复合材料正温度系数效应(PTC)的影响。并通过实验现象分析认为具有长径比结构的GF是导电复合材料负温度系数效应(NTC)减弱的原因,结合差示扫描量热分析(DSC)证明PTC效应与聚合物结晶熔融有直接关系。  相似文献   

8.
利用马来酸酐接枝聚烯烃(POE-g-MAH)弹性体为增韧剂,乙二胺功能化石墨烯(G-EDA)为纳米填料,经熔融共混法制备了聚苯乙烯(PS)/POE-g-MAH/G-EDA纳米复合材料,并对填料和所得纳米复合材料的结构和性能进行了全面的表征。红外光谱(FTIR)、扫描电子显微镜(SEM)、力学性能、维卡软化温度和熔融指数测试表明:乙二胺(EDA)已成功接枝于石墨烯的表面上;共混过程中,POE-g-MAH的酐基与EDA的氨基发生反应改善了共混体系的界面相容性;G-EDA在熔融共混过程中均匀分散于PS基体中;随着G-EDA含量的增加,复合材料的拉伸强度先增大后降低,当G-EDA质量分数为0.5%时,复合材料的拉伸强度达到最大值,比PS/POE-g-MAH提高了12.3%,比纯PS提高了15.5%;而当G-EDA质量分数为0.75%时,复合材料的冲击强度达到最大值,比PS/POE-g-MAH提高了22%,比纯PS提高了22.4%。因此,当G-EDA的质量分数在0.5%~0.75%之间时,复合材料的综合力学性能最好。G-EDA的加入,纳米复合材料的邵氏A硬度、维卡软化温度等都逐渐增大,而熔融指数逐渐降低。  相似文献   

9.
熔融模压制备PVDF/石墨烯复合材料及其性能研究   总被引:1,自引:0,他引:1  
以聚偏二氟乙烯(PVDF)树脂为基体、石墨烯为填料,通过高速混合机混合作用,经分散剂、润湿剂、表面活性剂、相容剂等组分协同作用,使石墨烯在PVDF中分散均匀,然后经熔融模压成型,制得PVDF/石墨烯复合材料。利用扫描电子显微镜和透射电子显微镜研究了复合材料的微观形貌,并研究了石墨烯含量、制备工艺、助剂及PVDF树脂牌号对复合材料介电性能、导电性能和导热性能的影响。结果表明,采用的助剂体系和高速混合、熔融模压的制备方法能使石墨烯以微片的形态均匀地分散在PVDF树脂基体中,形成良好的功能网络结构;复合材料介电常数、电导率、介电损耗、体积电阻率和导热系数均随石墨烯含量增加而增大;当石墨烯质量分数达到2.0%左右时,复合材料的介电和导电特性均发生突变,向高介电、高导电材料转变,而当石墨烯质量分数达到5.0%左右时,复合材料开始向高导热材料转变;制备工艺和PVDF树脂牌号对复合材料热、电性能的影响则相对较小。  相似文献   

10.
为了改善热塑性聚氨酯(TPU)的力学性能及形状记忆性能,采用聚偏氟乙烯(PVDF)为共混改性剂,并经熔融共混法制备了不同PVDF含量的PVDF/TPU复合材料。采用傅里叶红外光谱分析、X射线衍射、扫描电子显微镜、拉伸和形状记忆测试等表征了所得复合材料的微观结构及性能。结果表明,PVDF与TPU间通过氢键形成了强相互作用。PVDF的加入促进了TPU的结晶。与纯TPU相比,PVDF/TPU复合材料的定伸应力升高。加入PVDF后,PVDF/TPU复合材料的形状固定率升高,形状回复率降低。综合拉伸和形状记忆测试结果,当PVDF的质量分数为5%时,PVDF/TPU复合材料的性能最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号