首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
目的:探索前列腺癌三维适形放疗(three dimensional conformal radiotherapy,3DCRT)患者膀胱充盈与否导致的体积改变对患者肿瘤靶区的几何中心位移、肿瘤靶区及正常组织体积和肿瘤靶区及正常组织受照射剂量的影响,为前列腺癌临床3DCRT提供参考依据.方法:13例病理证实的原发性前列腺癌患者分别于膀胱充分充盈及充分排空状态下行3DCRT扫描.在治疗计划系统(treatment planning system,TPS)中,勾画膀胱充分充盈扫描图像的肿瘤靶区和周围正常组织,勾画膀胱充分排空扫描图像的肿瘤靶区和周围正常组织,并进行比较.结果:膀胱充分充盈与充分排空状态相比,肿瘤靶区几何中心在X、Y、Z方向的移位分别为(0.26±0.22)、(0.39±0.31)和(0.16±0.17)cm.患者临床靶区体积(clinical target volume,CTV))、计划靶区体积(planning target volume,PTV)、直肠及股骨头平均体积及受照射剂量,在膀胱充分充盈及充分排空状态下皆没有明显变化(P值>0.05).膀胱充盈时,膀胱的平均体积是排空时的512.52%,小肠的平均体积是排空时的68.09%,膀胱的平均受照射剂量是排空时的35.34%,小肠的平均受照射剂量是排空时的15.17%,其差异均有统计学意义(P值均<0.05).结论:前列腺癌3DCRT中,膀胱体积的改变对肿瘤靶区中心位移影响较大,与排空状态相比,膀胱充盈能减少膀胱及小肠的受照射体积和受照射剂量.  相似文献   

2.
王皓  孙长庚 《医疗装备》2007,20(7):13-16
目的:探讨靶区中心的平均位置应用于肺部三维适形放射治疗的可行性。方法:选取可接受三维适形放射治疗的周围型肺癌患者8例,在治疗体位和自由呼吸的情况下,应用多序列时相特异性快速CT扫描技术进行扫描。扫描图像传输到三维治疗计划系统后,按序列进行三维重建,计算各序列肿瘤中心坐标,求出靶区中心的平均位置。制定治疗计划时将照射野中心置于靶区中心的平均位置,计算靶体积,并于放射治疗前和过程中应用电子射野影像系统进行验证,并与靶区中心平均位置法的靶体积进行比较。结果:按靶区中心平均位置方法计算出的靶体积与GTV外放10mm和20mm的靶体积相比,平均靶区中心法的靶体积显著减少(P值分别为0.014和0.000)。放射治疗前和过程中的电子射野影像系统验证片未发现肿瘤运动到照射野外。结论:靶区中心的平均位置法应用于肺部肿瘤的三维适形放射治疗是可行的。  相似文献   

3.
目的:探索呼吸运动对肺癌三维适形放疗肿瘤靶区的几何中心和体积的影响,为肿瘤靶区的勾画提供参考依据。方法:27例病理证实的原发性非小细胞肺癌患者平静呼吸状态,行CT扫描,相同条件下行呼气末屏气扫描和吸气末屏气扫描。在治疗计划系统(TPS)中,分别勾画平静呼吸状态扫描图像和吸气末屏气状态扫描图像的肿瘤靶区,得到肿瘤靶区(GTV)及诊断图像的肿瘤靶区(GTVz),将呼气末屏气扫描和吸气末屏气扫描图像进行融合,得到融合图像,勾画得到融合图像的肿瘤靶区(GTVf),并进行比较。结果:肿瘤靶区几何中心在X、Y、Z方向移位的平均值,平静图像和诊断图像与融合图像相比分别为(0.34±0.21)、(0.21±0.27)、(0.84±0.42)cm和(0.36±0.24)、(0.28±0.31)、(0.91±0.43)cm。融合图像靶体积与平静图像靶体积、诊断图像靶体积相比,在肺的上、中、下部位分别增加37.29%、21.44%、44.82%和42.33%、25.39%、50.97%,差异都有统计学意义。平静图像靶区体积与诊断图像靶体积相比,在肺的上、中、下部位分别增加4.09%、4.28%、4.24%,差异有统计学意义。结论:呼吸运动引起肺癌肿瘤靶区中心坐标在X、Y、Z方向上发生不同程度的移位,同时伴随肿瘤靶区体积的改变,勾画肿瘤靶区时中应充分考虑这一点。  相似文献   

4.
目的:比较研究三维锥形束CT(3D-CBCT)与四维锥形束CT(4D-CBCT)在肺癌容积旋转调强治疗(VMAT)计划精确放射治疗中的应用。方法:选取在医院接受VAMT放射治疗的101例肺癌患者,根据治疗中扫描模式的不同,将使用3D-CBCT成像的患者纳入3D-CBCT组(45例),将使用4D-CBCT成像的患者纳入4D-CBCT组(56例),比较两组患者治疗中CT图像校正后分次间摆位误差、肿瘤靶区外放边界、肿瘤内靶区(ITV)体积、靶区计划靶体积(PTV)剂量和危及器官(OAR)心脏受照剂量。结果:两组患者治疗中CT图像校正后左右(X轴)方向、前后(Z轴)方向摆位误差均显著下降,差异有统计学意义(Z=-3.005,Z=-2.047;P<0.05),上下(Y轴)方向摆位误差无统计学差异;两组PTV外放范围均在Y轴方向最大;两组肺上叶肿瘤ITV体积差异无统计学意义,4D-CBCT组肺中下叶ITV体积明显低于3D-CBCT组,差异有统计学意义(Z=-2.245,P<0.05);4D-CBCT组靶区最大剂量(Dmax)、最小剂量(Dmin  相似文献   

5.
目的:CBCT技术对肺癌肺不张放疗一例的其应用价值。方法:于患者放疗前每次采用CBCT进行图像采集,将CBCT扫描图像与CT平扫定位图像匹配,若肺体积有明显变化,则改变放射治疗计划。结果:在放疗期间,因肿瘤体积缩小肺叶张开而致放疗靶区位移,3次改变治疗计划。因由肿瘤体积变化致使在治疗中3次改变治疗计划。结论:治疗前通过CBCT获得扫描图像可以减少分次治疗间摆位误差,提高放疗摆位精度,因肿瘤体积变小、肺叶张开靶区移位而及时改变放疗计划,实现精确放疗。  相似文献   

6.
目的:分析治疗计划系统(TPS)重建CT图像靶体积的误差对宫颈癌肿瘤区(GTV)、临床靶区(CTV)、计划靶区(PTV)和周围正常组织受照射剂量的影响,找出适合临床的最佳方案。方法:在TPS上模拟宫颈癌患者TPS重建CT图像靶体积误差,评价原有的GTV、CTV、PTV和周围正常组织的照射剂量。结果:当靶体积误差在-69.25%~-10%的范围时设计的计划高剂量边缘不能很好地包住原计划的PTV、CTV、GTV;当靶体积误差在0~-10%的范围时设计的计划对原计划的PTV、CTV、GTV的影响不大,与原计划相近。当靶体积误差在80%~10%的范围时设计的计划高剂量边缘包住了靶体积外更多的直肠、膀胱;当重建误差小于10%时设计的计划,对直肠、膀胱的影响不大,与原计划相近。结论:TPS重建CT图像靶体积误差使原有的PTV、CTV、GTV的受照剂量降低或使肿瘤周围正常组织受照射剂量增加。  相似文献   

7.
目的 通过鼻咽癌治疗前后的靶区变化来研究原发肿瘤残留的规律.方法:入组49例经过调强放射治疗后的鼻咽癌病例.治疗前后各扫描一组CT图像和MRI图像一组.治疗接近结束的时均发现有肿瘤残留.临床医生分别在两组CT图像中勾画出鼻咽部原发肿瘤的体积.在计划Pinnacle计划系统中统计出靶区前后的体积,来初步研究其规律.结果:其中按分期肿瘤退缩分别为T1,T2,T3,T4分别为0.95,0.55,1.32,2.18 cm3/天,相应的退缩率为3.09,1.79,4.44,7.00%/天.肿瘤总得平均缩小为1.34 cm3/天.结论:肿瘤的残留与分期的肿瘤的分期相关性不明显,肿瘤在放射治疗中有明显的缩小,临床中应注意调整方案来增加肿瘤残留部分的剂量,以期更好提高治愈率及减少放射治疗的副反应.  相似文献   

8.
放射治疗以其准确和最大限度减少头面部器官的损伤而成为目前头颈部肿瘤主要和首选的治疗手段,为保证放射治疗疗效,其中最重要的前提是保证每次治疗的摆位重复准确,以保证靶区获得精准剂量,同期相邻周边正常组织和重要敏感器官获得恰当的保护。各种精确放疗技术在头颈部肿瘤的治疗成果愈加彰显了其治疗优势作用,如三维适形放疗(CRT)和调强放疗技术(IMRT)以及图像引导技术下与实时自动校正系统结合的放射治疗(IGRT),体位固定架装置等不断地应用于临床定位、计划设置和最终的治疗,使放射治疗向着增加肿瘤GTV剂量,提高肿瘤局控率,减少周围重要组织受累的几率的目标不断迈进。  相似文献   

9.
目的:分析图像配准方法对肺癌放疗患者图像引导摆位精度带来的影响效果。方法:对本医院收治的10例肺癌放疗患者实施调查,选于2017年04月至2019年05月,采取骨性图像配准方法、灰度图像配准方法实施图像配准,分析结果。结果:灰度图像配准方法中配准靶区附近区域、配准患侧区域CT轮廓计划的大体肿瘤体积对治疗摆位锥形束CT轮廓的大体肿瘤体积的覆盖率高于骨性图像配准方法(P0.05);灰度图像配准方法中配准靶区附近区域CT轮廓的大体肿瘤体积对锥形束CT轮廓的大体肿瘤体积的几何中心点偏差低于骨性图像配准方法(P0.05)。结论:和骨性图像配准方法相比,肺癌放疗患者采取灰度图像配准方法的图像引导摆位精度更高。  相似文献   

10.
目的:对比基于常规三维CT(3DCT)和k V级锥形束CT(CBCT)定义的周围型孤立性肺癌的内靶体积(ITV3DCT和ITVCBCT)大小、相似度的差异性研究。方法:纳入12例周围型孤立肺腺癌,治疗前行常规3DCT定位扫描勾画形成大体肿瘤靶区(GTV),定义GTV前后、左右、头足向分别均匀外扩5mm、5mm、10mm形成内靶体积ITV3DCT。放疗第一天行CBCT扫描并直接勾画获取ITVCBCT,对比ITV3DCT和ITVCBCT大小,配对t检验对比ITV3DCT和ITVCBCT的差异性。同时将CT及CBCT图像融合配准调整并进行不同扫描坐标坐标系转换,使得两幅图像在同一坐标系上,用DICE相似法(DSC)计算出重叠度。结果:ITV3DCT较ITVCBCT明显偏大,体积平均增加35.4cm3(范围9.0-92.8cm3),且P=0.000,差别有统计学意义。平均体积相似度仅为0.49(范围0.26-0.67)。结论:常规3DCT不能用于确定运动肿瘤内靶体积,临床实践中可以参考CBCT来确定肿瘤运动的大小和空间位置,以获得更好的治疗效果。  相似文献   

11.
目的:研究常用呼吸机检测仪的相关设置对呼吸机性能检测的影响,以加强呼吸机的应用管理和质量控制。方法:所处环境和气体成分的变化可改变呼吸机某些类型传感器的流量或通气量灵敏度,环境的变化能够改变在某些标准条件下表示的流量、通气量的修正值;呼吸机检测阈值的设定不当可导致潮气量检测异常等情况;对环境温度、气体温度、环境湿度、气体类型、气体修正模式等参数的设置进行分组实验。结果:通过实验得出了上述参数对潮气量检测的一些影响规律。结论:在检测呼吸机时,要对呼吸机检测仪的气体修正模式、气体类型、环境温度和气体温度等参数设置加以注意,否则对呼吸机潮气量的检测将产生较大的误差。  相似文献   

12.
A combination of four-dimensional computed tomography with 18F-fluorodeoxyglucose positron emission tomography (4D CT-FDG PET) was used to delineate gross tumor volume (GTV) in esophageal cancer (EC). Eighteen patients with EC were prospectively enrolled. Using 4D images taken during the respiratory cycle, the average CT image phase was fused with the average FDG PET phase in order to analyze the optimal standardized uptake values (SUV) or threshold. PET-based GTV (GTVPET) was determined with eight different threshold methods using the auto-contouring function on the PET workstation. The difference in volume ratio (VR) and conformality index (CI) between GTVPET and CT-based GTV (GTVCT) was investigated. The image sets via automatic co-registrations of 4D CT-FDG PET were available for 12 patients with 13 GTVCT values. The decision coefficient (R2) of tumor length difference at the threshold levels of SUV 2.5, SUV 20% and SUV 25% were 0.79, 0.65 and 0.54, respectively. The mean volume of GTVCT was 29.41 ± 19.14 ml. The mean VR ranged from 0.30 to 1.48. The optimal VR of 0.98, close to 1, was at SUV 20% or SUV 2.5. The mean CI ranged from 0.28 to 0.58. The best CI was at SUV 20% (0.58) or SUV 2.5 (0.57). The auto-contouring function of the SUV threshold has the potential to assist in contouring the GTV. The SUV threshold setting of SUV 20% or SUV 2.5 achieves the optimal correlation of tumor length, VR, and CI using 4D-PET/CT images.  相似文献   

13.
目的应用西门子CTVision图像引导分析校正胸部肿瘤在放疗中的摆位误差,为制定胸部肿瘤放疗计划时从临床靶区(CTV)到计划靶区(PTV)的外扩边界提供参考。方法选取我科2011年1~9月应用西门子ONCOR直线加速器行根治性放疗的胸部恶性肿瘤患者20例,每周行CTVisinn图像引导放射治疗分析1次,对摆位误差超过3inltl的患者进行在线校正,分析患者校正前和校正后的摆位误差。结果20例患者共获得三维方向上校正前后的摆位误差数据194组。校正前患者在前后(AnteriorPosterior,AP)、上下(SuperiorInferior,SI)和左右(LeftRight,LR)3个方向上的摆位误差分别是:(-0.57±1.28)mm、(-0.81±4.39)mm、(0.94±1.25)mm,校正后AP、SI、LR3个方向的摆位误差值分别为:(-0.24±0.40)mm、(0.31±1.29)mm、(-0.02±0.41)mm,采用Van等人的摆位外扩边界(MPT,)推理公式Mptv=2.5∑+0.76计算,校正前cTv到门V需外扩MPTV值应为11mm.校正后为3mm。结论采用CTVision图像引导系统在线引导放疗技术,可以有效地减少患者在治疗实施过程的误差,提高治疗精度。  相似文献   

14.
目的:针对单模造影图像的成像特点进行呼吸运动校正方法研究,减小单模肝超声造影图像序列定量分析中呼吸运动的影响。方法:采用图像门控法与模板图像迭代配准法对单模肝造影图像序列配准,在10个肝细胞癌超声造影病例上初步探索,提出呼吸运动校正方法的可行性,并验证该方法的有效性。结果:校正后的肝超声造影图像序列所生成的加权过渡时间和参数图的质量比校正前明显提高,校正后帧选择的图像与模板图像的平均相关系数比校正前平均增加0.26±0.15,校正后的图像序列生成的时间-强度曲线拟合的偏差值比校正前平均减少34.47±10.9。结论:该校正方法能提高单模肝超声造影图像序列定量分析的准确性,从而有助于提高肝肿瘤的鉴别诊断效率。  相似文献   

15.
目的 比较2种呼吸信号采集方式对运动靶区勾画的影响。方法 正方体模体(内含球体)置于运动平台上,设置运动周期、频率和方向,模拟呼吸运动。分别利用RPM法和GE法进行呼吸信号采集,在最大密度投影(MIP)序列进行靶区勾画。比较正方体和球体不同呼吸信号采集方式下各自重建体积与理论运动体积差异。结果 同一种呼吸信号采集方式下,相同呼吸幅度、不同呼吸频率的重建体积变化较小。对于球体靶区,RPM法重建体积与理论运动体积偏差在-1.5%~5.7%(P <0.05);GE法偏差在-1.3%~-13.8%(P <0.05)。对于正方体靶区,RPM法重建体积与理论运动体积偏差在0.2%~0.9%;GE法偏差在-2.6%~0.9%,2种方法与理论体积差异均无统计学意义(P> 0.05)。结论 对于小体积球体靶区,2种方法得到的MIP图像勾画得到的靶区体积均小于实际肿瘤运动体积;对于大体积正方体靶区,2种方法重建结果与理论结果相比差异均无统计学意义。对于小体积靶区而言,RPM法重建偏差更小且重建图像质量更高。  相似文献   

16.
The purpose of the study is to evaluate the accuracy of two deformable image registration algorithms by examining their influence on the dose summation results obtained using 4DCT (four dimensional computed tomography) dose distributions based on ‘4D’ planned and ‘4D optimal’ IMRT (intensity modulated radiation therapy) plans. For ten lung cancer patients, 4D step and shoot IMRT plans were produced. The breathing cycle was divided into ten parts and for each part a set of CT images was acquired. For each patient the treatment plan was copied to the CTs of each phase and subsequently recalculated. Each phase CT was then registered to the average intensity projection (AIP) CT using a deformable image registration (DIR) algorithm and the composite dose distribution was then calculated by summing up the deformed dose distributions from all the phases (‘4D’ treatment plan). The ‘4D optimal’ treatment plan was created by producing an optimal plan on the CTs of each phase of the respiratory cycle and summing up the deformed dose distributions from all the phases. The results indicate that it is possible to map the dose distributions of different breathing phases in lung using DIR, and that different DIR methods and target characteristics (motion amplitude, size, location) affect the differences between original plan, ‘4D’ and ‘4D optimal’ dose distributions. Although the ‘4D optimal’ plans were designed to achieve 95% target coverage, both of the used DIR methods failed to translate that coverage in some instances. The same variation between these methods was also observed in the ‘4D’ plan comparison. This study shows that it is feasible to perform an acceptably accurate calculation of the composite deformed dose. However, it is important to account for tumor motion and body deformation especially when the tumor volume is small and/or located in the lower lobe of the lung.  相似文献   

17.
Gating is a relatively new and potentially useful therapeutic addition to external beam radiotherapy applied to regions affected by intra-fraction motion. The impact was of gating on treatment margins, image artifacts, and volume and positional accuracy was investigated by CT imaging of sinusoidally moving spheres. The motion of the spheres simulates target motion. During the CT imaging of dynamically moving spheres, gating reproduced the static volume to within 1%, whereas errors of over 20% were observed where gating was not used. Using a theoretical analysis of margins, gating alone or in combination with an electronic portal imaging device may allow a 2-11 mm reduction in the CTV to PTV margin, and thus less healthy tissue need be irradiated. Gating may allow a reduction of treatment margins, an improvement in image quality, and an improvement in positional and volumetric accuracy of the gross tumor volume.  相似文献   

18.
目的:比较CT图像和CT/MRI融合图像来源的肺癌脑转移肿瘤靶区,评价CT/MRI融合靶区容积应用于三维适形放射治疗时,对治疗剂量的影响。方法:将20例非小细胞肺癌脑转移患者的增强CT和MRI扫描的图像传送至图像处理工作站,在CT和CT/MRI融合图像上分别勾画GTV和周围重要的器官。每个病例分别在CT图像和CT/MRI融合图像都做1个三维适形放射治疗计划。肿瘤的处方剂量为60 Gy,比较2个治疗计划中肿瘤靶区的95%容积(D95)受照平均剂量、周围正常组织的5%容积(D5)受照平均剂量。结果:CT/MRI融合图像上的肿瘤靶区平均比CT上的肿瘤靶区大21.32%。用CT上勾画的靶区有一部分肿瘤处于低剂量区,CT/MRI融合图像上的靶区D95剂量分布较好,但在周围重要器官的剂量分布较高。结论:CT/MRI融合图像有助于靶区的确定,在三维适形放射治疗计划上的肿瘤靶区剂量分布足够,能提高靶区勾画的准确性,更利于精确放疗的实施。  相似文献   

19.
Computed tomography (CT) is the gold standard for radiotherapy simulation and treatment planning, providing spatial accuracy, bony anatomy definition and electron density information for dose calculations. Magnetic resonance imaging (MRI) has been introduced in radiotherapy to improve visualisation of anatomy for accurate target definition and contouring, however lacks electron density information required for dose calculations, with various methods used to overcome this. The aim of this work is to assess the impact on dose calculation accuracy and optimisation results of different approaches to determine electron density, as could be used in MRI only treatment planning for nasopharyngeal datasets with VMAT treatment plans. Volumetric modulated arc therapy (VMAT) plans were created for 10 retrospective head and neck (H&N) nasopharyngeal patients. The VMAT plans were generated on the gold standard dataset, the original CT scan. Data sets with no density correction (water equivalent) and two different sets of bulk density correction for bone/air/tissue applied separately were generated for these patients and the VMAT plans were recalculated for each case. Plans were also reoptimised on these data sets, and recalculated. Optimisation error was assessed through equivalent uniform dose (EUD) differences. Additionally, point dose comparison, dose volume histogram (DVH) analysis and gamma analysis of dose were used to assess dose calculation error. The dose calculation error on average was an increase in EUD whereas the optimisation error on average was a reduction in EUD compared to the original plan for all datasets aside from the bone only override dataset where bone was set to 1.61 g/cm3. For the optimisation error, the largest mean absolute error (MAE) was 1.88 Gy EUD for the PTV, and 2.21 Gy EUD for the brainstem, for the reoptimisation completed on the air only overridden dataset, and recalculated on the original. Bulk density corrections for bone and air provide dose calculations within 3% of the original treatment plans. Optimisation errors have the potential to be greater than dose calculation errors if incorrect density corrections are utilized. Electron density correction using a bulk density approach achieves dose calculation uncertainties within 3%, however more advanced approaches, such as a voxel based approach, may improve accuracy and should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号