首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
由于增材制造逐层累积的工艺特点, 其成形材料力学性能往往不同于传统减材制造材料. 在航空航天、核工业以及医疗领域中, 对增材制造材料疲劳性能的研究不足导致其很难作为主承力件使用, 这制约着增材制造技术的进一步推广使用. 本文以增材制造316钢为对象, 通过仿真手段研究其高周疲劳性能, 研究表明循环载荷下滑移带与晶界处的裂纹萌生是增材制造316钢材料发生高周疲劳的主要原因. 根据提出的微观力学模型研究了增材制造316钢的高周疲劳性能, 其中分别使用唯象学晶体塑性理论和弹塑性内聚力模型模拟晶粒和晶界的力学行为. 为了准确评估增材制造316钢的高周疲劳性能, 本文针对于晶粒和晶界分别采用Papadopoulos疲劳准则和一种基于安定性理论的介观疲劳准则同时考虑位错滑移和晶界对疲劳性能的影响. 最后, 为了验证所提微观力学模型的有效性, 本文对比了增材制造316钢和轧制316钢高周疲劳性能的仿真结果. 与实验结果相同, 仿真结果显示增材制造316钢相较于轧制316钢具有更好的高周疲劳性能.   相似文献   

2.
洪友士 《力学学报》2022,54(8):2101-2118
关于合金材料超高周疲劳, 笔者提出了裂纹萌生特征区及特征参数的概念, 并提出了“大数往复挤压” 模型揭示裂纹萌生特征区形成机理. 对于高强钢, 该特征区为断裂面的细颗粒区; 对于钛合金, 该特征区为断裂面的粗糙区. 近年, 关于合金材料超高周疲劳裂纹萌生过程与机理受到疲劳领域广泛关注, 并有若干研究新进展. 对此, 有几个问题需要进一步论述, 包括: (1) 微结构细化并演化为纳米晶层的裂纹萌生特征区是发生在裂纹形成之前或之后? (2) 特征区的形成与加载应力比的关系? (3) 特征区纳米晶层的厚度、连续性和微结构细化程度? (4) 特征区的形成是否需要真空环境? 此外, 不同高强合金和不同加载方式的特征区形态也有新的进展. 本文将基于近年文献中的结果, 对这些问题进行综合论述. 本文还简要论述了裂纹萌生特征区概念和大数往复挤压模型的启示, 包括: 合金材料超高周疲劳特性的评估与预测、提高增材合金材料超高周疲劳性能的途径、制备纳米晶薄层材料的可能性. 在郑哲敏先生仙逝一周年之际, 以此文告慰我的导师郑先生.   相似文献   

3.
LZ50车轴钢疲劳短裂纹萌生的数值模拟   总被引:1,自引:0,他引:1  
针对LZ50车轴钢的疲劳短裂纹应用数值方法对疲劳短裂纹在LZ50车轴钢中的萌生进行了数值模拟.利用二维Voronoi图随机地生成了该材料的微观结构.根据对疲劳试样所施加的载荷,结合有限元法得到了该微观结构中应力和应变的分布规律.最后利用材料的疲劳S-N曲线和裂纹萌生的概率方法给出了在不同循环周次下LZ50钢中疲劳短裂纹的萌生过程.该数值模拟的结果可用于进一步分析LZ50车轴钢中疲劳短裂纹的扩展和群体演化行为.文中还指出在单向拉压的工况下,短裂纹的萌生方向主要受到与载荷方向相一致的应变影响,最大剪应变方向萌生方向的夹角为45°.  相似文献   

4.
耿黎明  杨卫 《力学进展》2007,37(2):225-232
铁电陶瓷是具备力电转换功能的典型高技术材料.本文概述铁电陶瓷电致疲劳失效的研究进展.首先介绍电致疲劳的定义和特点,然后讨论电致疲劳失效在不同尺度下的表现行为,包括宏观尺度下裂纹的疲劳扩展;细观尺度下裂纹的萌生;微观尺度下点缺陷在循环电场下的积聚.随即阐述了铁电陶瓷在循环电场下缺陷汇聚的理论分析,运用微结构演化方法计算了单个孔洞随畴界的移动距离,推导了循环电场下铁电陶瓷内点缺陷浓度的演化方程,给出了点缺陷浓度与其汇聚程度之间的定量关系,从而提出了贯通不同尺度的铁电陶瓷电致疲劳失效机理.   相似文献   

5.
45CrNiMoVA钢的低周疲劳特性和表面疲劳裂纹的在位观测   总被引:2,自引:0,他引:2  
利用MTS810材料试验机对带中心圆孔的45CrNiMoVA钢低周疲劳特性进行了研究,并借助长焦显微镜和CCD摄像头对试样表面裂纹的演化规律进行了在位停机观测和在位不停机连续观测尝试,试验发现,裂纹均萌生于与拉伸应力垂直的圆孔边缘;疲劳裂纹的萌生与Lueders形变带密切相关,萌生期超过整个疲劳寿命的70%,主裂纹的发展既可以共面扩展的方式向前连续延伸,也可以裂纹连接的方式向前跳跃传播,应力控制的低周疲劳条件下,疲劳寿命与应力面形貌图像,频闪光源照明可以实现表面疲劳裂纹的在位不停机观测。  相似文献   

6.
干态下车轮材料表面疲劳裂纹萌生试验研究   总被引:2,自引:1,他引:1  
利用WR-1轮轨滚动磨损试验机,结合安定极限理论研究了干态下影响车轮材料表面疲劳裂纹萌生与扩展的因素,探究了表面疲劳损伤形成机理和演变规律.结果表明:随垂向力、横向力和冲角增大,表面疲劳裂纹越容易萌生扩展;冲角对表面疲劳裂纹的萌生与扩展起着重要作用,大冲角下斜线状表面疲劳裂纹萌生扩展明显;只有横向力而不存在冲角时,试样表面不会出现斜线状表面疲劳损伤;车轮试样在周期性循环载荷作用下在表面先形成塑性流动,然后沿轮轨表面切向力方向扩展成斜线状的表面疲劳起皮剥落损伤;垂向力是影响表面裂纹萌生时间的重要因素之一.  相似文献   

7.
轴承钢在滚动接触疲劳(RCF)中失效的主要原因之一是亚表面白蚀区(WEA)的形成.本文中从塑性应变累积引起剪切局域化新的角度对WEA进行了研究.通过耦合晶体塑性和相场损伤理论建立了损伤演化本构模型,研究了非金属夹杂处塑性应变累积和损伤演化.研究表明,接触疲劳载荷引起的塑性应变局域化导致了剪切带的形成.剪切带的形貌、取向和应变与WEA的一致,表明WEA实际上是应变局域化的剪切带.晶体取向对WEA损伤的形成和发展有很大的影响,WEA仅在择优的晶体取向下形成.与软夹杂周围的剪切带和损伤演化不同,硬夹杂处的剪切带与夹杂相切,形成的4条剪切变形带将夹杂“包围”.剪切带内部处于高应变和低应力的状态,带中心处应变达到最大,随带宽两侧急剧减小,而中心处应力却最小,几乎为零,沿带宽两侧增大,这说明裂纹在剪切带内萌生和扩展.该结论阐明了裂纹和WEA形成的关系,即裂纹是在WEA形成过程中因应变不协调产生,而非裂纹先产生,裂纹上下表面相互摩擦导致WEA形成.  相似文献   

8.
合金材料超高周疲劳的机理与模型综述   总被引:2,自引:0,他引:2  
在循环载荷作用下, 合金材料发生裂纹萌生、扩展直至断裂的周次在107以上的过程被称为超高周疲劳 (very-high-cycle fatigue, VHCF).本综述将从30年前超高周疲劳的研究起源讲起, 直到近年的最新进展.引言之后的内容包括: 超高周疲劳研究的起源, 超高周疲劳的主要特征, 超高周疲劳裂纹萌生特征区和特征参量, 裂纹萌生特征区的形成机理与模型, 超高周疲劳性能预测模型. 在叙述中, 试图回答下列问题: 什么是超高周疲劳?为什么要研究超高周疲劳?超高周疲劳的关键科学问题是什么?超高周疲劳的S-N曲线趋势为什么发生变化?超高周疲劳裂纹为什么萌生于材料 (试样) 内部?裂纹内部萌生的过程和机理是什么? 上述问题有的可以给出明确的回答, 有的则是现阶段的最新结果, 并有待于对问题的继续探索.   相似文献   

9.
冷喷涂作为一种新兴的表面处理技术,广泛应用于增材制造和零部件修复等领域。为了探究冷喷涂处理后Q355钢基体的疲劳裂纹扩展规律,对2组标准单边缺口3点弯曲试样进行了冷喷涂处理。在光滑的Q355B钢基材表面分别沉积了纯Al和A5052铝合金涂层,然后对冷喷涂试件和一组未喷涂光滑试件进行了3点弯曲疲劳试验,得到了裂纹尖端张开位移和裂纹长度、裂纹扩展速率和荷载循环次数的规律曲线并进行了对比分析。结果表明:在裂纹扩展长度相同的情况下,冷喷涂试件和未喷涂试件的裂纹尖端张开位移基本相同,且随着疲劳裂纹的延伸,裂纹尖端张开位移也随之快速增大;在一定的裂纹尖端张开位移范围内,冷喷涂处理可以降低疲劳裂纹扩展速率;采用裂纹尖端张开位移作为疲劳裂纹扩展控制参数对冷喷涂试件的疲劳裂纹扩展规律进行判定是准确的,且裂纹尖端张开位移通过试验容易获得,简单方便,可以同时满足裂纹尖端弹性和塑性的情况。  相似文献   

10.
一个修正的金属材料低周疲劳损伤模型   总被引:1,自引:0,他引:1  
疲劳破坏是金属最常见的失效形式之一。基于连续损伤力学理论和能量原理,本文提出了一个修正的金属材料低周疲劳损伤演化方程,该方程综合考虑了材料的塑性强化、微裂纹闭合效应等因素对损伤累积的影响。将修正后的损伤演化方程以UMAT子程序的形式导入有限元计算软件ABAQUS之中,建立了疲劳损伤的计算模型,并以铝合金7050-T7451为例对该模型的有效性和适用性进行了验证。  相似文献   

11.
To quantify the effects of interactions between various microstructure attributes on fatigue life in the high cycle fatigue (HCF) regime, we have proposed a new microstructure-sensitive extreme value statistical framework. This framework couples the extreme value distributions of certain fatigue indicator parameters (FIPs) or response functions to the correlated microstructure attributes that exist at the extreme value locations of these FIPs. We demonstrate the application of this statistical framework to investigate the microstructure-sensitive fatigue response of the PM Ni-base superalloy IN100 at 650 °C. To accomplish this task, we construct statistical volume elements (SVEs) used to compute the local response for 200 instantiations of IN100. These SVEs are constructed and simulated via the finite element method with crystal plasticity constitutive relations. The results of the simulations are used to explore extreme value statistics of the FIPs for these microstructures. The extreme value distributions of the Fatemi–Socie FIP are fit with high confidence by the Gumbel distribution and are defined in a representative nature with as few as 25 simulated microstructure instantiations (i.e., SVEs). The extreme value marked correlation functions of the apparent Schmid factor based on the geometry of the slip systems relative to the loading direction indicate that cube slip may be important to fatigue crack formation in this material system. This supports previous experimental observations of fatigue crack formation and microstructurally small fatigue crack growth along cube planes in IN100 in grains that are unfavorably oriented for octahedral slip at elevated temperatures.  相似文献   

12.
A newly developed microstructure-sensitive extreme value probabilistic framework to characterize the performance/variability for damage evolution processes is exercised to compare the driving forces for fatigue crack formation (nucleation and early growth) at room temperature for four different microstructure variants of a duplex Ti-6Al-4V alloy. The aforementioned probabilistic framework links certain extreme value fatigue response parameters with microstructure attributes at fatigue critical sites through the use of marked correlation functions. By applying this framework to study the driving forces for fatigue crack formation in these microstructure variants of Ti-6Al-4V, these microstructures can be ranked in terms of relative high cycle fatigue (HCF) performance and the correlated microstructure attributes that have the most influence on the predicted fatigue response can be identified. Nonlocal fatigue indicator parameters (FIPs) based on the cyclic plastic strain averaged over domains on the length scale of the microstructure attributes (e.g., grains, phases) are used to estimate the driving force(s) for fatigue crack formation at the grain scale. By simulating multiple statistical volume elements (SVEs) using crystal plasticity constitutive relations, extreme value distributions of the predicted driving forces for fatigue crack formation are estimated using these FIPs. This strategy of using multiple SVEs contrasts with simulation based on a single representative volume element (RVE), which is often untenably large when considering extreme value responses. The simulations demonstrate that microstructures with smaller relative primary α grain sizes and lower volume fractions of the primary α grains tend to exhibit less variability and smaller magnitudes of the driving forces for fatigue crack formation. The extreme value FIPs are predicted to most likely occur at clusters of primary α grains oriented for easy basal slip. Additionally, surrounding grains/phases with soft orientation shed load to less favorably oriented primary α grains, producing extreme value FIPs.  相似文献   

13.
陈泽坤  李晓雁 《力学进展》2022,52(2):397-409
金属增材制造是集设计、制造一体化的一种新型金属构件制造技术, 在航天航空、交通运输、生物医疗等领域具有广阔的应用前景. 金属增材制造材料的力学性能与其材料微观组织密切相关. 因此, 发展金属增材制造过程中材料微观组织的模拟方法, 有助于指导和优化金属增材制造的工艺参数和流程, 从而制备出性能优异的金属材料. 本文发展了基于连续体假设的热传导模型与元胞自动机相结合的模拟方法, 并利用生死单元方法, 考虑晶粒的重熔和再生长过程, 解决了金属增材制造中多层粉末制造的数值模拟问题. 本文采用该方法模拟了镍基合金IN718、不锈钢316L和高熵合金FeCoCrNiMn的增材制造过程, 并获得了这些增材制造合金的典型材料微观组织, 其模拟结果与实验结果相吻合. 同时, 将该方法拓展到三维尺度的模拟, 研究了镍基合金IN718增材制造过程中三维晶粒的形核和生长. 最后, 对金属增材制造过程中材料微观组织演化的模拟研究中的主要问题进行了总结和展望.   相似文献   

14.
金属增材制造是近30年发展起来的一种新型制造技术, 不同于传统的减材制造过程, 它是基于离散-堆积原理, 根据设计的三维数据模型, 逐层加工获得立体实物的制造技术, 具有近净成形、快速制造、设计自由度高等优点, 特别适用于具有复杂几何结构的高熔点金属构件的直接成形, 在航天航空、核能工业、交通运输、生物医疗等领域具有巨大的技术优势和广阔的应用前景. 本文首先介绍了3种典型的金属增材制造技术原理, 包括选区激光熔化技术、激光金属沉积技术和选区电子束熔化技术. 随后对金属增材制造中的熔合不良、气孔、裂纹等缺陷的形成机理及其控制方法进行了综述, 以激光功率、扫描速度和扫描策略等工艺参数为例阐述了工艺参数对成形构件组织形貌的影响, 同时介绍了金属增材制造技术在传统合金、高熵合金以及非晶合金等材料中的应用及其力学性能. 最后对金属增材制造在扩充可打印的合金体系、量化缺陷与残余应力对材料性能的影响、发展可预测组织形貌的模拟方法、建立金属增材制造数据库和相关标准等方向进行了展望.   相似文献   

15.
Lattice structures are widely used in many engineering fields due to their excellent mechanical properties such as high specific strength and high specific energy absorption (SEA) capacity. In this paper, square-cell lattice structures with different lattice orientations are investigated in terms of the deformation modes and the energy absorption (EA) performance. Finite element (FE) simulations of in-plane compression are carried out, and the theoretical models from the energy balance principle are developed for calculating the EA of these lattice structures. Satisfactory agreement is achieved between the FE simulation results and the theoretical results. It indicates that the 30° oriented lattice has the largest EA capacity. Furthermore, inspired by the polycrystal microstructure of metals, novel structures of bi-crystal lattices and quad-crystal lattices are developed through combining multiple singly oriented lattices together. The results of FE simulations of compression indicate that the EA performances of symmetric lattice bi-crystals and quad-crystals are better than those of the identical lattice polycrystal counterparts. This work confirms the feasibility of designing superior energy absorbers with architected meso-structures from the inspiration of metallurgical concepts and microstructures.  相似文献   

16.
Plasticity in polycrystalline fretting fatigue contacts   总被引:1,自引:0,他引:1  
Plastic deformation at the scale of microstructure plays an important role in fretting fatigue failure of metals under cyclic loading. In this study, crystal viscoplasticity theory with a planar triple slip idealization is employed to represent crystallographic plasticity in two-dimensional fretting analyses of Ti-6Al-4V. Subsurface deformation maps, fretting maps, and shakedown maps are constructed based on application of J2 plasticity theory for the polycrystalline substrate. Comparisons are then made with polycrystal viscoplasticity simulations, the latter suggesting that plastic ratchetting plays a significant role in the fretting fatigue process.  相似文献   

17.
A material model which describes the rate-dependent crystallographic slip of FCC metals has been implemented into a quasistatic, large deformation, nonlinear finite element code developed at Sandia National Laboratories. The resultant microstructure based elastic–plastic deformation model has successfully performed simulations of realistic looking 3-D polycrystalline microstructures generated using a Potts-model approach. These simulations have been as large as 50,000 elements composed of 200 randomly oriented grains. This type of model tracks grain orientation and predicts the evolution of sub-grains on an element by element basis during deformation of a polycrystal. Simulations using this model generate a large body of informative results, but they have shortcomings. This paper attempts to examine detailed results provided by large scale highly resolved polycrystal plasticity modeling through a series of analyses. The analyses are designed to isolate issues such as rate of texture evolution, the effect of mesh refinement and comparison with experimental data. Specific model limitations can be identified with lack of a characteristic length scale and oversimplified grain boundaries within the modeling framework.  相似文献   

18.
Laser shock peening (LSP) is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts. Cr5Mo1V steel exhibits a gradient hardened layer after a LSP process. A new method is proposed to estimate the impact toughness that considers the changing mechanical properties in the gradient hardened layer. Assuming a linearly gradient distribution of impact toughness, the parameters controlling the impact toughness of the gradient hardened layer were given. The influences of laser power densities and the number of laser shots on the impact toughness were investigated. The impact toughness of the laser peened layer improves compared with an untreated specimen, and the impact toughness increases with the laser power densities and decreases with the number of laser shots. Through the fracture morphology analysis by a scanning electron microscope, we established that the Cr5Mo1V steel was fractured by the cleavage fracture mechanism combined with a few dimples. The increase in the impact toughness of the material after LSP is observed because of the decreased dimension and increased fraction of the cleavage fracture in the gradient hardened layer.  相似文献   

19.
We present a family of phase-field models for fracture in piezoelectric and ferroelectric materials. These models couple a variational formulation of brittle fracture with, respectively, (1) the linear theory of piezoelectricity, and (2) a Ginzburg–Landau model of the ferroelectric microstructure to address the full complexity of the fracture phenomenon in these materials. In these models, both the cracks and the ferroelectric domain walls are represented in a diffuse way by phase-fields. The main challenge addressed here is encoding various electromechanical crack models (introduced as crack-face boundary conditions in sharp models) into the phase-field framework. The proposed models are verified through comparisons with the corresponding sharp-crack models. We also perform two dimensional finite element simulations to demonstrate the effect of the different crack-face conditions, the electromechanical loading and the media filling the crack gap on the crack propagation and the microstructure evolution. Salient features of the results are compared with experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号