首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
运用动态网格技术对直喷汽油机在不同转速下缸内气体运动进行瞬态模拟研究,分析可变滚流进气系统中滚流调节阀工作状态对进气流动、喷雾及油气混合特性以及缸内燃烧特性的影响。模拟结果显示,滚流阀开启和关闭对缸内燃油分布有着显著的影响。通过关闭滚流阀提高滚流强度,可加快缸内燃油雾化速度,有助于点火时刻在缸内形成浓度均匀的混合气并提高燃烧效率;在低转速下关闭滚流阀,增加缸内滚流比,可以显著提高缸内燃烧压力,增加点火时刻的湍动能,配合较晚的点火时刻形成稳定而快速的燃烧。模拟结果有利于分析和评价不同参数对可变滚流直喷汽油机混合气形成及燃烧特性的影响规律,为可变滚流进气系统的整机开发提供理论依据。  相似文献   

2.
利用AVL FIRE软件对不同结构的进气道方案进行瞬态模拟计算,分析了进气道结构对天然气发动机燃烧过程的影响规律。研究结果表明,湍动能的变化与涡流比的大小关系不大,主要受Z方向滚流比的影响;燃烧速率快慢与缸内平均湍动能高低并非一一对应关系,燃烧速率主要依赖于火花塞周围的湍动能分布情况。通过改进气道Ⅲ方案与气门座圈连接处的入射角度,缸内滚流与涡流运动均明显增强,且缸内湍动能分布显著改善,提升了化学反应速率与火焰传播速度,燃烧特性显著改善。两个试制进气道方案的台架试验结果表明,气道Ⅲ改进方案能够改善天然气发动机的经济性、可靠性与高速动力性。  相似文献   

3.
建立了发动机3D模型,在发动机进气道上采用了一个滚流控制阀片,以控制发动机气流运动。通过计算流体力学(CFD)软件计算缸内流场随曲轴转角的演变和发展过程,评估了缸内的滚流运动和湍动能。模拟了在当量空燃比条件下缸内混合气的浓度场分布,分析了缸内燃烧过程。研究结果表明:采用滚流控制阀在2 000r/min、0.2MPa和1 750r/min全负荷工况下能够有效提升缸内滚流比,并且在压缩行程末期增强了湍动能,有助于提升燃烧速率,改善燃烧。通过设计特殊形式的活塞顶面,对喷雾进行引导,避免了燃油喷雾直接碰撞在缸壁。燃烧模拟的缸内压力曲线与实际发动机台架测试的结果吻合性较好。  相似文献   

4.
为探究气道及燃烧室形状对汽油机缸内流场的影响,以某1.4L多点进气道喷射(MPI)汽油机为研究对象,利用AVL-FIRE软件对原机进气道形状进行稳态数值模拟计算,并对原汽油机在2 800r/min最低比油耗工况点进气及燃烧过程进行瞬态数值模拟计算。基于计算结果对进气道及燃烧室形状进行优化设计,提出4种计算方案,对优化前后各计算方案的缸内速度场、湍动能场、火焰前锋面密度和瞬时放热率进行对比分析。结果显示:改进气道的滚流比明显高于原机气道;结合改进气道,进气侧凸起活塞能够更好地维持滚流;在点火时刻,改进气道结合进气侧凸起活塞这一计算方案的缸内湍流分布及湍动能优于改进气道结合大曲率凹坑活塞、原机气道结合原机活塞(压缩比12)与原机计算方案,点火后火焰传播速度最大,燃烧速度最快。优化进气道及燃烧室形状能够加强缸内气流运动,提高点火时刻缸内湍流强度,加速火焰传播,改善燃烧过程。  相似文献   

5.
利用三维流体力学软件AVL-FIRE,对495汽油机在不同初始缸内流场条件下的压缩和燃烧过程进行CFD模拟计算。给出了汽油发动机压缩过程中不同初始滚流比下缸内速度场的变化趋势,分析了初始流场中滚流空间位置变化对湍动能场的影响,以及初始流场滚流比对燃烧的影响。  相似文献   

6.
高滚流燃烧系统对小型增压汽油机性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
针对一款3缸增压气道喷射汽油机,采用三维仿真与台架试验相结合的方式,研究了中、高滚流比燃烧系统在外特性工况下对缸内燃烧、整机动力性、经济性的影响。结果表明:滚流比数值大小直接影响湍动能峰值出现时刻及湍动能中心位置,进而影响火焰传播及发展;过高滚流比会导致湍动能中心偏心,影响火焰传播。采用中等滚流比的燃烧系统A有利于火核形成及火焰传播,缩短总燃烧持续期,进而提高热效率。在中低转速时,中等滚流燃烧系统A燃烧50%燃料所对应的曲轴转角比高滚流燃烧系统B提前,最多可提前3.4°,指示平均压力循环波动率可维持在3%左右。  相似文献   

7.
通过优化进气道和燃烧室结构来提升某缩缸后排量0.375L的单缸汽油机的性能,达到小型强化的目的。利用CONVERGE软件对发动机进行不同气门升程下气道稳态数值模拟和3 000r/min满负荷工况下的瞬态燃烧过程模拟。分别提出4种进气道优化方案和3种燃烧室优化方案。综合考虑流量系数和滚流比,选取优化进气道方案A。采用方案A进气道,平均流量系数提升22.26%,平均滚流比提升14.41%。在选用进气道方案A的前提下,综合分析不同燃烧室方案下流场分布、混合气分布、温度分布、缸内压力和燃烧相关参数,最终确定燃烧室优化方案2的缸内流场分布、湍动能和混合气分布情况能增加火焰传播速度,缩短急燃期,指示功率较缩缸后原方案提升14.1%,动力性能达到缩缸前0.400L排量发动机的水平。  相似文献   

8.
高滚流Atkinson循环燃烧系统研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为进一步提高发动机热效率,提出高滚流Atkinson循环燃烧系统概念。其特征是采用高滚流气道和活塞组合,配合Atkinson循环和废气再循环(EGR)技术,提高缸内的滚流和湍流水平,加快燃烧速度,同时降低汽油机爆震倾向。利用GT-Power和AVL FIRE软件针对某型汽油机进行了一维整机工作过程和三维计算流体动力学(CFD)模拟分析。结果表明:高滚流气道有利于促进缸内滚流运动,滚流比由原机的0.5提高到2.6;配合高滚流活塞后,使进气过程中产生的缸内初始滚流和压缩过程中的滚流维持作用都比原机有所增强,湍动能水平提升6.3%,瞬时放热率与原机相比平均提高15%;在此基础上,采用进气门晚关的方式实现Atkinson循环,并增加EGR系统,降低高压缩比带来的爆震倾向,比油耗在整个万有特性中均呈下降趋势,最低比油耗区明显变大,最低比油耗相比原机下降11.3g/(kW·h)。  相似文献   

9.
在一台可变滚流比直喷汽油机(GDI)上对不同滚流强度下缸内冷态湍流流场进行了数值模拟研究,并通过PIV结果进行了实验验证。研究结果表明:进气翻板关闭将显著提高缸内滚流强度并产生较强的湍流,尤其在气门升程最大时刻,其滚流比约为翻板开启时的5倍,湍动能为后者的4倍左右;缸内流场在高滚流比工况时较早地形成单一大尺度涡,同时涡心更明显,流场更加规则,流速相对较高,在进气下止点时平均流速为20m/s;在压缩过程中,高滚流比工况湍流的黏性耗散较大,湍动能衰减较快;但在压缩末期缸内湍动能较低滚流比工况高,同时分布更加均匀。  相似文献   

10.
采用三维计算流体力学软件STAR-CD对某米勒循环发动机进行数值模拟计算,分析进气道喉口附近截面积、燃烧室进气鼻梁区气门遮蔽以及活塞顶凸台高度和凹坑直径对米勒循环发动机缸内瞬态滚流比和湍动能的影响。结果表明:优化进气道喉口附近截面积、燃烧室进气鼻梁区气门遮蔽以及活塞顶凸台高度和凹坑直径能够提高缸内滚流比和湍动能,3种优化方案对缸内流动改善的效果顺序依次为进气道、活塞和燃烧室。  相似文献   

11.
汽油机气缸中滚动气流运动对发动机性能的影响   总被引:6,自引:2,他引:6  
本文通过调整导气屏气阀位置产生大范围变化的缸内气流运动形式,用传统的稳流试验台和作者最近研制的测缸内滚流运动的稳流试验台对各种气流运动形式进行稳流试验,用二维激光多普勒测速仪在反拖的发动机缸内紊流运动的发展变化并用着火发动机的性能实验结果来分析各种气流形式的涡流、滚流和紊流特性。试验结果表明,在气缸中产生较强的横轴涡流即滚动或接近滚动气流运动时,燃烧室内的紊流强度可获得较大的提高,性能也有明显的改  相似文献   

12.
This research presents the test results carried out in a diesel engine converted to spark ignition (SI) using gaseous fuels, applying a geometry change of the pistons combustion chamber (GCPCC) to increase the turbulence intensity during the combustion process; with similar compression ratio (CR) of the original diesel engine; the increase in turbulence intensity was planned to rise turbulent flame speed of biogas, to compensate its low laminar flame speed. The research present the test to evaluate the effect of increase turbulence intensity on knocking tendency; using fuel blends of biogas with natural gas, propane and hydrogen; for each fuel blend the maximum output power was measured just into the knocking threshold before and after GCPCC; spark timing (ST) was adjusted for optimum generating efficiency at the knocking threshold. Turbulence intensity with GCPCC was estimated using Fluent 13, with 3D Combustion Fluid Dynamics (CFD) numerical simulations; 12 combustion chamber geometries were simulated in motoring conditions; the selected geometry had the greatest simulated turbulent kinetic energy (TKE) and Reynolds number (Re) during combustion. The increased turbulence intensity was measured indirectly through the periods of combustion duration to mass fraction burn 0–5%, 0–50% and 0–90%; for almost all the fuel blends the increased turbulence intensity of the engine, increased the knocking tendency requiring to reduce the maximum output power to keep engine operation just into the knocking threshold. Biogas was the only fuel without power derating by the conditions of higher pressure and higher turbulence during combustion by GCPCC and improve its generating efficiency. Peak pressure, heat release rate, mean effective pressure and exhaust temperature were lower after GCPCC. Tests results indicated that knocking tendency was increased because of the higher turbulent flame speed; fuel blends with high laminar flame speed and low methane number (MN) had higher knocking tendency and lower output power.  相似文献   

13.
Recent high-speed imaging of ignition processes in spray-guided gasoline engines has motivated the development of the physically-based spark channel ignition monitoring model SparkCIMM, which bridges the gap between a detailed spray/vaporization model and a model for fully developed turbulent flame front propagation. Previously, both SparkCIMM and high-speed optical imaging data have shown that, in spray-guided engines, the spark plasma channel is stretched and wrinkled by the local turbulence, excessive stretching results in spark re-strikes, large variations occur in turbulence intensity and local equivalence ratio along the spark channel, and ignition occurs in localized regions along the spark channel (based upon a Karlovitz-number criteria).In this paper, SparkCIMM is enhanced by: (1) an extended flamelet model to predict localized ignition spots along the spark plasma channel, (2) a detailed chemical mechanism for gasoline surrogate oxidation, and (3) a formulation of early flame kernel propagation based on the G-equation theory that includes detailed chemistry and a local enthalpy flamelet model to consider turbulent enthalpy fluctuations. In agreement with new experimental data from broadband spark and hot soot luminosity imaging, the model establishes that ignition prefers to occur in fuel-rich regions along the spark channel. In this highly-turbulent highly-stratified environment, these ignition spots burn as quasi-laminar flame kernels. In this paper, the laminar burning velocities and flame thicknesses of these kernels are calculated along the mean turbulent flame front, using tabulated detailed chemistry flamelets over a wide range of stoichiometry and exhaust gas dilution. The criteria for flame propagation include chemical (cross-over temperature based) and turbulence (Karlovitz-number based) effects. Numerical simulations using ignition models of different physical complexity demonstrate the significance of turbulent mixture fraction and enthalpy fluctuations in the prediction of early flame front propagation. A third paper on SparkCIMM (companion paper to this one) focuses on the importance of molecular fuel properties and flame curvature on early flame propagation and compares computed flame propagation with high speed combustion imaging and computed heat release rates with cylinder pressure analysis.The goals of SparkCIMM development are to (a) enhance our fundamental understanding of ignition and combustion processes in highly-turbulent highly-stratified engine conditions, (b) incorporate that understanding into a physically-based submodel for RANS engine calculations that can be reliably used without modification for a wide range of conditions (i.e., homogeneous or stratified, low or high turbulence, low or high dilution), and (c) provide a submodel that can be incorporated into a future LES model for physically-based modeling of cycle-to-cycle variability in engines.  相似文献   

14.
火花点火发动机燃烧循环变动的理论研究   总被引:1,自引:0,他引:1  
沈惠贤  刘亮 《内燃机学报》1997,15(4):441-450
本文改进了一个火花点火发动机的准维计算模型,并对燃烧的循环变动进行了理论计算研究。这个模型包括点火时刻火花塞附近气流平均速度、湍流强度、气缸内残余废气系数以及缸内总的混合气质量等的循环变动的影响。将计算结果和试验结果进行了比较,证实了用这个模型可以较精确地预测燃烧的循环变动。另外,运用这个模型分别讨论了湍流强度、火焰中心位置在缸内的移动,以及残余废气系数的循环变动对不同燃烧阶段循环变动的影响程度,从而得出了一些有益的结论。  相似文献   

15.
In this study, the effects of ignition advance on dual sequential ignition engine characteristics and exhaust gas emissions for hydrogen enriched butane usage and lean mixture were investigated numerically and experimentally. The main purpose of this study is to reveal the effects of h-butane application in a commercial spark ignition gasoline engine. One cylinder of the commercially dual sequential spark ignition engine was modeled in the Star-CD software, taking into account all the components of the combustion chamber (intake-exhaust manifold connections, intake-exhaust valves, cylinder, cylinder head, piston, spark plugs). Angelberger wall approximation, k-ε RNG turbulence model and G-equation combustion model were used for analysis. In the dual sequential spark ignition, the difference between the spark plugs was defined as 5° CAD. At the numerical analysis; 10.8:1 compression ratio, 1.3 air-fuel ratio, 2800 rpm engine speed, 0.0010 m the flame radius and 0.0001 m the flame thickness were kept constant. The hydrogen-butane mixture was defined as 4%–96% by mass. In the analysis, the optimal ignition advance was determined by the working conditions. In addition, the effects of changes in ignition advance were examined in detail at lean mixture. For engine operating conditions under investigation, it has been determined that the 50° CAD ignition advance from the top dead center is the optimal ignition advance in terms of engine performance and emission balance. It has also been found that the NOx formation rises up as the ignition advance increases. The BTE values were approximately 12.01% higher than butane experimental results. The experimental BTE values for h-butane were overall 3.01% lower than h-butane numerical results.  相似文献   

16.
本文在分析火花点火发动机湍流涡结构及缸内湍流特性参数的基础上,提出了适用于火花点火发动机燃烧计算的准维湍流卷吸模型,通过建立相应的子模型及求解方程,实现了燃烧过程的计算;对压缩比为10的紧凑型燃烧室,在改变发动机转速、负荷、空燃比以及点火正时的情况下,计算得到的压力示功图、质量燃烧率等与实测值一致,从而证实了该模型的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号