首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
风力发电作为一种可再生能源发电在电网中的渗透率逐年升高,其具有的随机性、波动性和间歇性给电力系统的安全稳定运行带来了不利影响。与此同时,储能技术在近年来得到大力发展,其快速性和大范围吞吐性可以弥补风电机组单独运行时所带来的不利影响。首先对风电和储能系统的输出特性进行分析。其次针对风电并网发电在遇到频率波动时不具备惯性的问题,提出了应用储能补偿系统惯量,利用频率变化率作为反馈输入并调节惯量常数K,使风储联合系统作为一个整体对外提供有功功率参与电网调频,再利用Matlab/Simulink仿真验证了本文所提出控制策略补偿系统惯量的有效性。最后仿真对比风电机组单独参与电网调频与风储联合系统调频控制策略,得出风储联合系统参与电网调频的优越性。  相似文献   

2.
变速恒频风电机组转子动能被变频器与电网"隔离",使得其对电网贡献的惯量几乎为零。随着风电渗透率不断提高,电网的频率稳定性问题也随之加大。因此各国风电并网导则均明确要求风电场需具有参与系统频率调整的能力。由于风电场内部机组数量庞大,机组间运行工况不一致,风电场层面的控制仍具有很大难度。为此文中定义风电–储能系统的虚拟惯量,研究储能装置协助风电场进行惯量补偿的容量要求,并基于模糊逻辑控制提出一种利用储能装置补偿风电场惯量的控制策略。仿真研究表明:所提虚拟惯量补偿策略能够有效补偿风电场虚拟惯量、协调风电–储能系统和常规电网之间的能量交换,使风电场迅速响应系统的频率变化,从而有效地提高大规模风电场接入系统的频率稳定性。  相似文献   

3.
崔海林  李泰  潘荣睿 《电气传动》2021,51(23):48-52
随着风电机组在电力系统并网增多,能够支撑电网频率的惯性愈发降低,系统频率的稳定性受到了影响,为此,提出一种基于模糊自抗扰储能惯量控制的双馈风电机组电网频率调整方法.该方法通过设计模糊自抗扰控制器来控制储能系统的运行,进而为电网有功频率提供支撑;为有效估计和补偿系统的不确定性及扰动,利用模糊规则自动修改整定扩张状态观测器参数.最后,应用Matlab/Simulink来分析模糊控制和模糊自抗扰控制的储能惯量控制结构下电网频率及其他机组参数.仿真表明,所提方法具有更好的电网频率调节功能,同时,提高了系统的鲁棒性和抗干扰能力.  相似文献   

4.
为提升风-储联合运行系统的动态频率稳定性能,针对目前调频控制策略未充分发挥风电机组频率调节能力、无法适应负荷扰动过大情况以及转子转速恢复阶段存在频率二次跌落的问题,提出一种考虑系统频率安全稳定约束的风储联合频率响应控制策略。在惯量响应阶段结合转速约束和频率指标自适应调整虚拟惯量和下垂控制系数,在转子转速恢复阶段利用负指数函数动态调整转速恢复过程中功率参考值,避免频率的二次跌落。将风电机组与储能电池结合,引入频率稳定域概念,利用储能电池扩展频率稳定域边界,进一步提升风储联合系统的抗负荷扰动能力和频率稳定性。最后对风储联合调频策略进行仿真,结果表明在不同风速和不同负荷扰动下,所提控制策略能充分发挥风电机组频率响应控制能力的同时,避免了频率二次跌落,提升了电网频率安全稳定性。  相似文献   

5.
为了充分发掘风电机组调频能力,考虑传统储能系统直接补偿风电场二次频率跌落调频控制策略存在储能系统容量需求高、经济性差的缺点,该文提出一种基于虚拟同步机(VSG)技术的风储系统协调调频控制策略。首先,在风储VSG系统结构基础上建立风储VSG数学模型,并分析风储VSG调频特性;其次,依据储能系统数学模型研究储能系统VSG调频控制方法;然后,综合考虑风电场与储能系统出力特点,提出基于风电惯量释放和储能稳态支撑的风储协调控制策略,通过风电场与储能系统并行出力的方式,在降低储能系统容量需求的同时充分发挥风电机组短时功率支撑的作用;最后,通过仿真分析可知,采用该文控制策略可在稳定系统频率的基础上大幅降低储能系统容量配置,提高风电场调频经济性。  相似文献   

6.
介绍了直驱式风电机组的虚拟同步发电机实验系统及控制策略。风电机组的虚拟同步发电机功能要求机组有功功率响应于电网频率变化率及变化量,即虚拟惯量及一次调频。此处介绍了一种电力电子电网模拟实验系统。该系统能真实有效地模拟电网电压频率变化工况,虚拟同步发电机功能的实现对风电机组尤其是变流器的控制策略提出了更高要求,为此特别给出了风电机组的虚拟同步发电机功能控制实现方法。利用该实验系统在风电现场进行了并网测试,验证了该实验系统及风电机组控制策略的有效性。  相似文献   

7.
释放储能装置的频率支撑潜力,将是提升风、光高占比系统并网稳定性的关键。该文首先对比分析常规发电机组的固有惯量、风电机组的虚拟惯量及储能的惯性支撑特性。其次,根据系统中的储能容量配置,约束量化储能的虚拟惯量,为系统惯量需求提供评估依据,以保障频率安全。在此基础上,利用储能独特的功率支撑特性,提出恒频控制与调频状态转移控制结合的储能并网频率主动支撑控制策略,突破虚拟惯量及一次调频的传统控制模式。最后,搭建风电高渗透电网仿真系统,验证储能装置在所提控制策略下能够显著提升系统的频率稳定性,改善其对电网的主动支撑性能。  相似文献   

8.
为解决大规模风电并网带来的频率不稳定问题,提出风储联合调频的控制策略.双馈风力发电机组的调频 能力受风速的影响较大,无法满足调频需求.利用储能响应速度快、可控性高等特点弥补风电机组自身调频的不足. 当系统出现频率波动时,通过优化虚拟惯性控制来调节风电机组的输出功率.在MATLAB/Simulink仿真平台上开展 的风电不调频、风电调频和风储联合调频下电力系统频率特性的对比分析表明,风储联合能显著提高电力系统频率的 稳定性.  相似文献   

9.
基于双馈风电机组有效储能的变参数虚拟惯量控制   总被引:2,自引:0,他引:2  
双馈风电机组采用电力电子变流器控制使得机械部分与电气部分解耦,大规模风电并网后电力系统总有效转动惯量下降,增加了系统的调频压力。文中通过对双馈风电机组运行及控制特性的分析,研究给出了反映机组有效储能的等效虚拟惯性时间常数的计算方法,提出了基于双馈风电机组有效储能的变参数虚拟惯量控制策略。该控制策略通过检测电网频率变化以及动态识别机组运行状态,修改控制参数控制机组有功输出,释放或吸收机组有效动能,对电网提供动态频率支撑。在理论分析基础上进行时域仿真验证,仿真结果表明,双馈风电机组变参数虚拟惯量控制在机组各种运行工况下实现了对系统频率的有效支撑,提高了电力系统频率稳定性,且保证了机组调频过程中自身运行的稳定性。  相似文献   

10.
基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术   总被引:3,自引:0,他引:3  
基于电力电子换流器并网的变速恒频风力发电机组对电力系统的惯性几乎没有贡献,这将成为风电场大规模接入电网之后面临的新问题。在分析双馈风电机组运行特性和控制策略的基础上,研究双馈机组的虚拟转动惯量与转速调节及电网频率变化的关系,提出双馈风电机组的虚拟惯性控制策略。该控制策略通过检测电网频率变化来调节最大功率跟踪曲线,从而释放双馈机组"隐藏"的动能,对电网提供动态频率支持。通过对含20%风电装机容量的3机系统的仿真分析,验证该控制策略在系统出现功率不平衡后,能够利用双馈风电机组的虚拟惯量使风电场具备对系统频率快速响应的能力,从而提高了基于双馈风电机组的大规模风电场接入电网后的电力系统频率稳定性。  相似文献   

11.
随着电网中风电渗透率逐渐升高,研究风电机组的频率控制特性对于提高系统安全稳定运行水平意义重大。与常规同步发电机基于惯性响应、一次及二次调频向系统提供频率支撑不同,双馈风力发电机一般采用电力电子变换器并网,导致其对于系统频率波动几乎没有响应。为此,已有文献提出了不同的风力发电机频率控制策略以提高频率响应。然而,现有控制策略在面对风速较低的运行场景中控制效果极其有限,导致实用性不强。针对上述问题,提出了一种考虑风储协调运行的频率控制策略,以提高双馈风力发电机的调频能力。该控制策略能灵活协调风力发电机和储能设备的有功输出,使得风储联合系统在低、中、高风速不同工况中表现出良好的虚拟惯量控制能力。  相似文献   

12.
利用频率安全预警预估系统惯量需求,并通过风储协同虚拟惯量支撑完成频率快速响应是保障新型电力稳定运行的关键。该文首先分析频率安全约束下的系统惯量需求。其次,分析风、储虚拟惯量响应特性,建立含虚拟惯量风储系统的频率响应模型,并量化系统频率变化特性及惯性响应时间。在此基础上,为完成频率预警,通过风、储运行约束离线评估风、储惯量的储备能力,并根据系统惯量需求,预估扰动参考功率,提出风储协同快速频率响应技术,完成风、储虚拟惯量分配。最后,搭建风电高渗透区域电网仿真系统,验证在所提控制策略下常规发电机组及风储可协同形成多源频率快速响应,灵活满足系统频率安全的设定要求。  相似文献   

13.
通过分析风力发电系统的功率控制特性,提出了一种风电机组快速频率控制方法,并将其与传统的虚拟惯量控制方法进行了对比研究。建立了风电参与系统频率控制的虚拟惯量控制和快速频率控制模型,分析了两种频率控制方法下系统的频率响应特性。采用虚拟惯量控制方法,风电机组跟踪系统频率变化情况释放风机旋转动能,需要合理整定控制器参数以保证风电机组的频率控制性能;快速频率控制可根据风电机组运行状态充分释放转子动能,对扰动后系统频率变化率改善效果更为明显,更适合高比例新能源接入后系统惯量较低的电力系统。  相似文献   

14.
双馈风机虚拟惯量控制通过在系统频率变化时利用附加功率控制释放一定的旋转动能或吸收一定的电能,从而为系统提供等效惯量。但风机在采用虚拟惯量控制后其转速会偏离最优转速,需要施加转速恢复控制。现有的基于比例(P)或比例积分(PI)控制器的转速恢复方法存在参数难以调节、恢复速度慢、容易引起频率的二次跌落等问题,因此需要有合适的控制策略使其恢复最优转速。该文提出了基于扩张状态观测器的双馈风机转速恢复策略,通过扩张观测器较为准确地动态估计风电机组捕获和输出的机械功率,进而通过设计加速功率曲线在避免二次频率跌落的前提下,提升转速恢复速度。动模实验验证了该方法的有效性。  相似文献   

15.
风电高渗透率下,电力系统对风电场频率调节能力提出了技术要求.考虑风机惯性控制和变桨距控制的频率响应能力,提出将储能与风电自身调频手段相结合,参与系统频率调节.利用储能的柔性控制作用,弥补风电机组自身惯性控制时间短和变桨控制响应慢的不足,提高了电力系统频率稳定性.在风电场和储能系统频率特性模型的基础上,建立了风储联合调频下电力系统的频率特性模型,对比分析了风电调频、储能调频和风储联合调频下的电力系统频率特性,以及储能的容量配置需求.算例分析表明,风储联合调频需求的功率和容量仅为储能单独调频的67%和11.1%,降低了储能配置成本,提高了储能参与风电调频的经济可行性.  相似文献   

16.
在分析双馈风电机组运行特性和控制策略的基础上,提出双馈风电机组的惯性控制策略.该策略附加一个频率控制环节来为风电机组的有功功率控制系统提供一个额外的有功参考信号,进而使风电机组能够及时响应系统频率来调整其有功输出.通过对含风电装机容量系统的仿真分析,验证该控制策略在系统出现功率不平衡后,能够利用双馈风电机组的惯量使风电场具备对系统频率快速响应的能力,从而提高了基于双馈风电机组的大规模风电场接入电网后的电力系统频率稳定性.  相似文献   

17.
为了解决大规模风电机组并入电网对电力系统频率稳定性问题,阐述了系统惯量对电网频率变化的影响,分析比较了不同类型风电机组的动态频率响应特性,并根据双馈风电机组参与电网一次调频的基本原理,对比了现阶段有关风电参与电网一次调频的控制策略。研究结果表明,储能设备对风电机组参与电网调频的能力具有重要辅助作用,联合控制方法能够较好地实现风电调频的能力,有利于电力系统的安全稳定运行。  相似文献   

18.
针对风电大规模并网所引起的系统频率不稳定,以及系统惯量降低导致调频能力下降的问题,在风储联合参与系统一次调频运行模式下,考虑储能荷电状态约束,提出了风储联合协同调频控制策略。建立含风储系统模型,提出了风储联合协同一次调频控制策略,并对风速区间进行了划分,在不同风速区间采取风机变速或变桨协调调频控制策略,以提高风电自身调频的利用程度。最后,在MATLAB/Simulink平台搭建了含风储联合系统的电网频率特性仿真模型,结果表明,所提策略能够有效改善电力系统综合频率特性,对风储联合实际工程的调频问题提供了理论依据。  相似文献   

19.
大规模光伏机组并网导致电力系统面临惯性下降与调频能力不足的问题。现有的有功备用方案虽然可以满足一次调频的需求,但难以提供惯量支撑,且弃光运行会影响发电效益。为此,提出一种储能辅助光伏机组实现虚拟惯量和一次调频的协调控制策略,在保证光伏发电效益的同时能够减少一半的储能容量。所提策略通过光伏变功率跟踪响应频率上扰、储能装置响应频率下扰的方式进行一次调频,并控制储能装置为系统提供惯量支撑。构建数学模型揭示由锁相环测量频率变化率(RoCoF)引发惯性功率跌落的本质原因,据此提出了运用一阶高通环节对频率变化率测量值进行修正的方法,以提升虚拟惯量控制效果。通过微电网算例仿真对比分析了有功备用控制和所提协调控制的频率调节效果,结果表明协调控制策略性能更优。  相似文献   

20.
为提升风–储联合运行场站的动态频率支撑能力,并针对当前控制方法不能兼顾惯量响应强度与快速转速恢复、频率二次跌落抑制的问题,提出了一种提升惯量响应与转速恢复的风储协调惯量控制方法。在风机控制侧,根据储能可调功率及风机转速运行约束制定风机惯量控制策略,以最大化提取转子动能,增强风机惯量响应能力。在风机转速恢复阶段,由储能可调功率完全补偿风机功率下调量,加快风机转速恢复、抑制系统频率二次跌落;在储能控制侧,通过判断各风机运行阶段,提出基于差异化时序确定储能输出功率的控制策略。算例验证表明,所提方法在显著增强风机惯量响应能力条件下,能加快转子转速恢复,并有效抑制系统频率二次跌落。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号