首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前已有的油葵脱粒装置无法适用不同条件下的油葵脱粒需求,该文针对油葵在脱粒过程中油葵脱净率较低、籽粒破损率较高等问题,设计了一种基于多杆机构的变隙式油葵脱粒装置。重点介绍了变隙式油葵脱粒装置的结构及工作原理,并对变隙式凹板筛结构的间隙调节机构与角度调节机构进行运动学分析、通过运动轨迹分析和求解,确定了变隙式凹板筛可变间隙为20~60 mm。试制了变隙式油葵脱粒装置试验台,以滚筒转速、脱粒间隙、喂入量作为试验因素,以脱净率、破损率为指标开展正交试验,确定较优作业参数组合。试验结果表明:在脱粒过程中,影响油葵脱净率和籽粒破损率的因素主次顺序为脱粒间隙、滚筒转速、喂入量,较优作业参数组合为脱粒间隙35 mm、滚筒转速280 r/min、喂入量1.8 kg/s。在较优作业参数组合下进行多次重复试验验证,结果表明,油葵的平均脱净率为99.01%,籽粒破损率为2.28%,满足油葵脱粒作业需求。该研究的较优作业参数适用于本文试验的物料条件,实际作业中需调整脱粒凹板筛的直径大小,进而改变脱粒间隙等工作参数以适应不同条件下的油葵脱粒需求。研究结果可为后续油葵脱粒装置的设计提供参考。  相似文献   

2.
油菜多滚筒脱粒分离装置的性能试验与分析   总被引:1,自引:5,他引:1  
为了获取适合联合收获机多滚筒油菜脱粒分离装置的结构方式和工作参数,该文在自行研制的多滚筒脱粒分离装置试验台上进行不同喂入量、不同滚筒转速、不同脱粒凹板间隙和不同脱粒齿杆时的切轴流滚筒与横轴流滚筒组合式双滚筒脱粒分离装置(简称切轴双滚筒脱粒分离装置)与切轴流滚筒与双横轴流滚筒组合式3滚筒脱粒分离装置(简称切轴轴3滚筒脱粒分离装置)的脱粒分离性能对比试验。试验结果表明:采用切轴轴3滚筒脱粒分离装置,在喂入量为1.8 kg/s,切轴流滚筒、第Ⅰ横轴流滚筒、第Ⅱ横轴流滚筒的转速依次为800、850和900 r/min、凹板间隙依次为20、25和30 mm、脱粒齿杆均为3排钉齿的组合方案为脱粒分离装置的脱粒损失率最小的最优组合;通过正交试验分析,得出喂入量和滚筒转速是影响脱粒分离装置脱粒损失率的主要因素。研究结果可为研制多滚筒油菜联合收获机提供参考。  相似文献   

3.
柔性杆齿滚筒脱粒机理   总被引:10,自引:7,他引:3  
传统的水稻脱粒是采用刚性脱粒齿,由于打击力大,造成水稻籽粒破碎或内部破损,从而影响水稻种子的发芽率或大米加工的成米率。为进一步探索降低水稻脱粒破碎或破损率的方法,设计了一种脱粒原理类似刚性杆齿脱粒的柔性杆齿脱粒滚筒,对其脱粒力进行了研究。分析表明在滚筒转速一定的情况下,采用柔性杆齿脱粒增加了与稻穗的接触时间,减少了冲击力,柔性杆齿打击力小于刚性杆齿。脱粒对比试验结果表明,直径小于刚性杆齿的柔性杆齿脱粒滚筒能适应水稻脱粒要求,脱粒指标中破碎率显著低于刚性杆齿滚筒,未脱净率、含杂率、脱粒率和断穗率均与刚性杆齿脱粒滚筒相近。  相似文献   

4.
针对食葵脱粒作业缺少专用机械装备、籽粒破损率高等问题,该研究基于人工击打脱粒原理,设计了一种食葵脱粒装置,脱粒时食葵盘面朝下模拟翻盘动作,锤杆被脱粒弹簧向上推动完成击打脱粒作业,借助输送带差速设计完成转盘作业。首先根据食葵盘及籽粒的物理特性,对脱粒部分及输送机构的结构参数进行设计和优化;再通过理论分析确定了影响未脱净率、破损率的关键因素。并试制了食葵脱粒装置试验台,以击打频率、脱粒通道间隙、弹簧压缩量为试验因素,以未脱净率、破损率为试验指标开展正交试验,确定了较优工作参数组合。结果表明:脱粒过程中,影响食葵盘未脱净率、籽粒破损率的因素主次顺序为击打频率、脱粒通道间隙、弹簧压缩量,较优工作参数组合为击打频率44次/min、脱粒通道间隙78 mm、弹簧压缩量25 mm,在较优参数组合下进行重复验证试验,结果表明,食葵未脱净率、籽粒破损率分别为8.12%、0.65%。研究结果可为食葵机械脱粒装备的研制提供参考。  相似文献   

5.
纹杆块与钉齿组合式轴流玉米脱粒滚筒的设计与试验   总被引:8,自引:6,他引:2  
为解决黄淮海地区玉米直接进行籽粒收获破碎率和未脱净率高的问题,该文在分析现有脱粒滚筒结构特点的基础上,设计了组合式轴流玉米脱粒滚筒,选取滚筒转速、滚筒倾角和凹板间隙为试验因素,在自制的玉米脱粒试验台上进行了单因素试验和正交试验,并运用SAS统计分析软件对试验结果进行了分析。单因素试验结果表明:随着滚筒转速的增大,籽粒破碎率先降低后升高,未脱净率则急剧减小并趋于稳定;随着滚筒倾角的增大,籽粒破碎率和未脱净率则逐渐变小;随着凹板间隙的增大,籽粒破碎率先降低后升高,未脱净率先升高后降低并趋于稳定。正交试验结果表明:影响籽粒破碎率和未脱净率的主次因素顺序均为滚筒转速、滚筒倾角、凹板间隙,且转速430 r/min、滚筒倾角6?和凹板间隙55 mm时籽粒破碎率和未脱净率均最低。该研究可为高含水率玉米脱粒滚筒的设计提供参考。  相似文献   

6.
为解决菠萝采收效率低、成本高等问题,该研究根据菠萝果实的几何特征和花萼结合处易折断、茎秆较脆等生物学特性设计了一种拨杆喂入式菠萝采收机构,分析了影响收获效率的主要因素,包括:拨禾轮半径、拨禾轮转速、履带行走机的前进速度等,并确定了关键部件的结构和运动参数。在对菠萝果实与茎秆分离的运动学和动力学分析的基础上,确定了菠萝果实在花萼与茎秆连接处或在靠近花萼的茎秆处断裂的力学依据,其中成熟度较高时,菠萝花萼处的脱落区结合强度较小,受切应力作用而断裂;成熟度较低时,茎秆较细处因弯曲过大而断裂。建立采收过程的多体运动学仿真模型,分析了收获过程中菠萝植株的力学和动力学特征,求解不同运动情况下拨杆接触果实时的接触力峰值。两因素五水平正交台架试验表明,菠萝收获效果最佳的参数组合为前进速度0.4 m/s、拨禾轮转速22.8 r/min。最优参数组合的田间试验结果表明:拨杆喂入式菠萝收获机进行收获作业时工作顺畅,采收后的植株生长状态良好;菠萝果实收获成功率为84%,损伤率为9.53%,综合评价指标为85.94%。研究结果可为菠萝采收机械的研究提供参考。  相似文献   

7.
与传统杆齿式圆柱形纵轴流脱粒滚筒相比,课题组前期研制的杆齿式鼓形纵轴流脱粒滚筒可有效改善轴向负荷,降低脱粒功耗。为进一步提升该滚筒性能,该研究对杆齿进行优化,设计了圆柱杆齿、弯头杆齿和闭式弓齿3种形状杆齿,建立水稻籽粒与杆齿碰撞冲击力学模型,分析了影响功耗的杆齿结构参数。以黄华占水稻为对象,基于EDEM软件构建水稻植株离散元柔性模型,利用仿真试验建立滚筒轴向负荷监测器,探究圆柱杆齿、弯头杆齿和闭式弓齿在不同杆齿直径和脱粒间隙下对滚筒轴向负荷均匀性的影响,得出最佳杆齿结构参数为杆齿直径10 mm,脱粒间隙25 mm。以喂入量、滚筒转速和杆齿形状为试验因素,以脱粒功耗为指标开展三因素三水平Box-Behnken响应面试验,结果表明,最优结构参数下,圆柱杆齿式鼓形滚筒最优工作参数为喂入量1.1 kg/s,滚筒转速900 r/min,功耗最低为4.61 kW;弯头杆齿式鼓形滚筒最优工作参数为喂入量0.95 kg/s,滚筒转速935 r/min,功耗最低为3.58 kW,确定将鼓形滚筒杆齿优化为弯头杆齿形状。分别开展仿真与台架对比试验,结果表明,优化后的弯头杆齿式鼓形滚筒较圆柱杆齿式鼓形滚筒的轴...  相似文献   

8.
轴流螺旋滚筒式食用向日葵脱粒装置设计与试验   总被引:3,自引:3,他引:0  
针对食葵脱粒过程中籽粒表皮划伤严重及未脱净率高等问题,该研究设计了一种轴流螺旋滚筒式食葵脱粒装置。脱粒元件为外径32 mm的螺旋管,对物料在脱粒空间的运移过程进行运动学与动力学分析,确定脱粒元件螺旋管螺旋升角为63°,螺距为2 800 mm。以葵花3638为对象进行台架试验,通过单因素试验探索喂入量、滚筒转速及脱粒间隙对籽粒未脱净率和破损率的影响,根据单因素试验结果,以喂入量、滚筒转速、脱粒间隙为影响因素,未脱净率和破损率为响应指标,进行二次回归正交旋转组合试验,利用Design-Expert软件建立响应指标与影响因素之间的数学模型,基于响应面法进行参数优化,获得脱粒装置在喂入量1.4 kg/s,滚筒转速300 r/min,脱粒间隙35 mm的参数组合下脱粒效果较好,此时未脱净率为0.55%,破损率1.76%。以优化参数组合进行验证试验,结果表明,未脱净率为0.59%、破损率为1.77%,与模型预测值的相对误差均小于5%。该装置未脱净率与破损率均低于现有向日葵脱粒机,满足向日葵机械化收获标准。该研究为食葵机械化收获装备的研制提供理论参考。  相似文献   

9.
短纹杆-板齿与钉齿脱粒滚筒的脱粒对比试验研究   总被引:1,自引:7,他引:1  
目前所使用的全喂入式水稻联合收割机的脱粒装置大多采用轴流式钉齿滚筒,其功耗较大,籽粒的破损率较高,脱出的茎秆较碎,脱出混合物中杂余含量高,使得后续的清选负荷增加.为了降低功耗,减轻清选负荷,提高联合收割机的工作效率,试制了一种新型脱粒滚筒——短纹杆-板齿脱粒滚筒,并与钉齿脱粒滚筒进行了脱粒对比台架试验.试验结果表明,相对钉齿脱粒滚筒而言,短纹杆-板齿脱粒滚筒在脱粒水稻时功耗低,脱出混合物杂余含量少,能有效的减轻清选负荷.  相似文献   

10.
小区小麦育种收获机锥型脱粒滚筒性能试验   总被引:5,自引:3,他引:2  
小区小麦育种收获机锥型脱粒滚筒体积小、功耗低,可加快脱粒滚筒轴向物料输送,提高清机效率。为了进一步研究锥型脱粒滚筒作业性能,结合自行研制的纵轴流锥型滚筒脱粒装置,通过改变锥型滚筒主要结构参数进行对比试验,得出滚筒锥角及滚筒脱粒元件是影响滚筒作业性能的主要结构参数。在选取最优参数后研制出一种集钉齿、短纹杆-板齿于一体,锥角为13°的组合齿锥型滚筒,并进行试验。试验结果表明,该滚筒作业时种子破碎率为0.52%,滚筒脱粒损失率及籽粒含杂率分别为0.43%及6.23%,装置内部种子残留率为0,功耗为2.48 kW,符合小区小麦育种收获要求。  相似文献   

11.
针对色素辣椒采收需求大,人工采收困难,采收效率低,破损率高等问题,该研究设计了一种双螺旋对辊式辣椒收获装置。首先通过对辣椒与螺旋钢棒接触点进行受力分析,确定影响采收性能的主要因素,并通过单因素试验确定优化试验中各因素选取范围。并以打完脱叶剂2 d后,辣椒茎秆含水率≤40%的新疆巴州焉耆县色素辣椒为试验对象,以采净率和破损率为试验指标,以工作速度、对辊转速、对辊间距和对辊螺距为试验因素,进行四因素五水平正交中心组合优化试验;运用Design-expert 10软件对试验结果进行参数优化,通过验证试验对优化后的参数进行验证。试验结果表明:当工作速度为2.1 km/h,对辊转速为142 r/min,对辊间距为24.3 mm,对辊螺距为10 cm时,采净率为98.7%,破损率为3.46%,满足色素辣椒收获机田间作业要求。研究结果可为色素辣椒收获机的设计和优化提供参考。  相似文献   

12.
柔性齿与刚性齿脱粒水稻功耗比较分析与试验   总被引:4,自引:3,他引:4  
柔性脱粒能减少刚性脱粒冲击所带来的水稻籽粒破损,对柔性脱粒的研究与应用早已引起了农机研究者的广泛关注。为了比较柔性齿滚筒与刚性齿滚筒脱粒水稻的功耗差异,该文将脱粒滚筒视为刚体,脱粒齿视为弹性体,脱粒过程视为柔性脱粒齿对水稻籽粒的碰撞冲击过程,通过分析比较刚性齿与柔性齿脱粒过程中冲量矩及对水稻籽粒打击力,建立了刚性齿脱粒滚筒与柔性齿脱粒滚筒的功耗模型,同时通过对刚性和柔性脱粒过程碰撞冲量和动能损失的分析比较,从理论上证明了柔性齿脱粒相对于刚性齿脱粒具有动能损失小、功耗低。试验结果表明在喂入量相同情况下,脱粒齿直径相同的刚性齿滚筒比柔性齿滚筒的转矩大,消耗的功率也大,验证了柔性脱粒能降低打击力与功耗的理论分析结果。  相似文献   

13.
针对纵轴流联合收获机在收获稻麦时出现的脱粒不彻底、分离不完全等问题,该研究设计了一种分段式纵轴流脱粒分离装置。该装置主要由锥形脱粒滚筒、脱粒强度可调式凹板筛、360°分离式凹板筛、作业参数电控调节系统等构成。通过单因素试验,分别获得了脱粒强度可调式凹板筛的开关板针对小麦和水稻脱粒的最佳开关状态。为寻求装置作业参数对脱粒效果的影响规律及最优参数组合,进行了多目标优化试验。以滚筒转速、导流板角度、凹板筛脱粒间隙、凹板筛分离间隙及喂入量作为影响因素,以破碎率、损失率、脱出物含杂率为试验指标,建立了破碎率、损失率、脱出物含杂率的数学模型。试验结果表明:各因素对破碎率影响的显著性大小顺序为滚筒转速、凹板筛脱粒间隙、导流板角度、喂入量、凹板筛分离间隙;对脱出物含杂率影响的显著性大小顺序为滚筒转速、导流板角度、凹板筛脱粒间隙、喂入量、凹板筛分离间隙;对损失率影响的显著性大小顺序为滚筒转速、导流板角度、凹板筛脱粒间隙、喂入量、凹板筛分离间隙。通过多目标参数优化分析,确定装置进行小麦脱粒的最优作业参数组合为脱粒滚筒转速905 r/min、导流板角度69°、凹板筛脱粒间隙18 mm、凹板筛分离间隙19 m...  相似文献   

14.
针对酿酒葡萄机械化采收时对植株损伤大、果粒破损率高、脱粒效率低等问题,该文设计了一种曲轴式振动脱粒收获装置,该装置主要由曲轴、弹性夹持振动机构、传动系统、机架等组成。对曲柄摇杆机构的运动和弹性振动杆变形进行了分析,获取了影响作业效果的主要因素。根据Box-Benhnken中心组合设计方法,以夹持间距、转速和偏心距为影响因子,酿酒葡萄脱粒率和破损率为响应函数进行三因素三水平二次回归正交试验设计,建立了响应面数学模型,并进行了参数优化和验证。结果表明,酿酒葡萄脱粒率影响因素的显著性顺序为转速、偏心距和夹持间距,破损率的影响显著性顺序为转速、夹持间距和偏心距;最优参数组合为夹持间距193 mm、曲轴转速720 r/min、曲轴偏心距38.8 mm,在此参数下测得的酿酒葡萄脱粒率为93.06%,破损率为4.57%,与模型优化理论值相比脱粒率降低了1.09个百分比,破损率增加了1.45个百分点。该研究可为酿酒葡萄的机械化收获及其他林果的振动采收装置设计提供参考。  相似文献   

15.
针对目前中国酿酒葡萄人工采摘效率低下的问题,为实现酿酒葡萄机械化采收,提出柔性梳脱式采摘方式,设计了以柔性弓齿为核心部件的酿酒葡萄柔性梳脱式采摘机构。首先基于ADAMS软件建立了弓齿及果梗的柔性仿真模型。采用广义力建立连接力,传感器监测断裂条件,实现了葡萄果粒在外力作用下的脱粒过程控制,解决了面对多对象脱粒仿真过程控制的关键问题。分析了梳脱辊转速、柔性弓齿弯曲刚度和梳脱辊间距对葡萄脱粒过程的影响规律和机理。基于仿真试验选取因素及水平,并以脱粒时间和破损率为指标,进行了正交试验,确定试验因素最佳组合为:梳脱辊转速160 r/min,弓齿弯曲刚度0.067 N·m2,梳脱辊间距280 mm,在该条件下脱粒时间为1.73 s,破损率为3.51%。该文为深入研究收获过程的机理和收获机构的优化提供参考。  相似文献   

16.
针对目前油葵机械化收获存在缺少专用机械设备、籽粒损失率和破损率均较高、收获设备工作性能不可靠等问题,该研究设计了油葵联合收获机拨禾板式割台装置并介绍其结构与工作原理,建立拨禾齿的运动模型,分析拨禾机构运动特性并获取拨禾齿端点的运动轨迹。通过对拨禾齿端点运动轨迹仿真,分析拨禾板转速、机具前进速度与拨禾板圆周数量之间的变化关系;利用MATLAB软件编写程序,仿真获取相邻两拨禾齿端点的运动轨迹曲线,解决拨禾齿运动参数不合理、籽粒碰撞损失较高的难题。割台性能试验结果表明,当割台倾斜角度25°、绞龙转速150 r/min、拨禾板与导板距离170 mm时,油葵花盘损失率为2.04%。进一步通过田间油葵收获正交试验和参数优化,分析油葵收获机前进速度、拨禾板转速、茎秆留茬高度的不同组合对油葵籽粒损失率及破损率的影响,利用Design-Expert获取最优参数组合。结果表明,当油葵收获机前进速度1.2 m/s、拨禾板转速240 r/min、茎秆留茬高度570 mm时,油葵籽粒损失率与破损率分别为1.90%和0.65%。研究结果可为提高油葵联合收获机的作业性能、油葵收获机的结构设计和参数优化提供参考。  相似文献   

17.
割秧后花生收获机捡拾装置设计与试验   总被引:1,自引:1,他引:0  
先将秧蔓切割再进行收获可较好地实现覆膜种植花生秧蔓饲料化利用。该研究针对割秧后花生植株变短、横向尺寸变小、荚果-秧蔓比增加,原有收获机捡拾装置适应性差的问题,在已有花生捡拾收获技术基础上,对捡拾弹齿间距、弹齿转速、折弯角度、弹齿排数等关键结构和运动参数进行改进,研制了一种适于割秧后收获的弹齿式花生捡拾装置。运用SPSS软件对割秧后花生植株横向尺寸进行统计分析,确定了弹齿间距为7 cm;通过对花生植株低损捡拾和顺畅抛送条件的理论分析,在回转半径为21 cm的条件下,确定捡拾弹齿转速为60 r/min;通过对花生植株被弹齿捡起时的受力情况分析,确定捡拾弹齿折弯角度为102°,并根据铺放厚度,确定捡拾弹齿折弯部分长度为4 cm;建立捡拾弹齿齿尖运动方程,运用Matlab软件对不同排数弹齿齿尖运动轨迹进行分析,确定捡拾弹齿排数为6排。田间试验结果表明,弹齿式花生捡拾装置的平均捡拾率为98.07%,捡拾装置造成的平均落果率为1.23%;满足割秧后花生捡拾收获作业需求。该研究可为割秧后花生以及其他作物捡拾收获机具研发和改进提供借鉴。  相似文献   

18.
在水稻脱粒过程中,脱粒滚筒的转速、凹板间隙、齿间距等是脱粒籽粒损失率和脱粒功耗的重要影响因素。为获得水稻联合收割机上纵轴流脱粒滚筒的最佳脱粒参数组合及可控范围,在自行研制的切纵流脱粒分离试验台上开展了水稻脱粒分离性能试验研究。对纵轴流滚筒在不同脱粒滚筒转速、凹板间隙、齿间距参数组合下进行水稻脱粒性能台架试验研究,并对试验结果进行回归分析和置信度分析。将获得的最佳操作参数置信区间用于控制纵轴流滚筒的水稻脱粒性能并预测其最优参数组合,同时进行了验证。结果表明,为将纵轴流脱粒滚筒的总损失率控制在0.33%以内且将脱粒功耗控制在46.36 kW以内,则具有95%置信度的纵轴流滚筒转速为772.61~905.74 r/min、脱粒间隙为22.18~37.93mm、齿间距为104.96~170.17 mm,其相应的纵轴流滚筒最佳转速为839 r/min、凹板间隙为30 mm、齿间距为138 mm。该研究对于降低纵轴流滚筒的脱粒功耗和籽粒损失具有重要意义,同时可为水稻联合收割机纵轴流脱粒滚筒最佳结构及参数设计提供参考。  相似文献   

19.
不同脱粒元件对切流与纵轴流水稻脱粒分离性能的影响   总被引:1,自引:6,他引:1  
为研究不同脱粒元件对切流与纵轴流脱粒分离性能的影响,该文在自行研制的纵轴流脱粒分离试验台上,利用自制的矩形齿板、短纹杆-板齿、钉齿、刀形齿、梯形板齿对喂入量为7及8 kg/s的水稻进行了脱粒分离性能试验,对比切流装置在不同脱粒元件下的功耗和初脱分离率及纵轴流复脱装置在不同脱粒元件下的总功耗、夹带损失率、脱净率、破碎率、脱出混合物轴向和径向分布等指标。结果表明,在7 kg/s水稻喂入量时,刀形齿切流装置初脱分离率最高为47.71%,钉齿纵轴流复脱装置夹带损失最低为0.25%;切流装置采用刀形齿且纵轴流复脱装置采用钉齿,在8 kg/s水稻喂入量时,单位功耗最低为8.51 kW/(kg·s),夹带损失最低为0.31%,脱净率达到99.96%。  相似文献   

20.
针对板栗人工收获效率低、高空落果易伤人等问题,该研究设计了一种板栗收获拍打式落果装置。装置采用无急回特性的摇杆机构,建立拍打摇杆的角位移、角速度和角加速度运动学方程,进行动力学数值仿真。通过板栗树果实与树枝的分离力试验,得出不同拉力角的分离力变化规律,0°~90°,随着拉力角的增大分离力逐渐减小,拉力角为0°时最大分离力为65.24 N。对4种常用材料的拍打条分别进行三因素三水平正交试验。结果表明,聚氨酯材料的拍打力小于板栗与树枝的分离力,铁片和玻璃纤维拍打力满足要求但作用力过大容易损伤板栗树枝,最佳拍打条材料为低密度聚乙烯,最优组合为电机转速600 r/min、拍打条长度350 mm、拍打角度20°,此时拍打力大小为70.71 N。田间试验结果表明,该落果装置能有效采摘板栗果实,平均落果率为90.5%,且对板栗树枝损伤较小。该设计满足板栗果实的采摘要求,对板栗收获机的研发提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号