首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
以文冠果活性炭纤维(XSBACF)负载碳酸钾制备K_2CO_3/XSBACF固体碱催化剂,用于文冠果生物柴油的制备。考察了K_2CO_3的负载量、煅烧温度和时间、醇油摩尔比、K_2CO_3/XSBACF加入量和反应温度对生物柴油产率影响。结果表明,当K_2CO_3负载量为50%,煅烧温度500℃,煅烧时间3 h,催化剂用量为油重的1. 5%,醇油摩尔比9∶1,反应温度70℃,反应时间2 h时,文冠果生物柴油的产率可达85. 10%。红外和XRD分析表明,该催化剂在煅烧过程中产生了新的活性中心K2O。  相似文献   

2.
以K2CO3、纳米CaCO3(自制)为原料,K2CO3的负载质量分数为50%,在750℃焙烧3 h得到纳米K2CO3/CaO固体碱催化剂,并通过XRD、FT-IR及TG-DSC等手段进行确认.再用该催化剂催化制备生物柴油,结果表明:制备生物柴油的最佳条件为温度70℃,质量分数3%的纳米K2CO3/CaO,醇油摩尔比12...  相似文献   

3.
分别采用合成的铝镍类水滑石和其焙烧后复合氧化物为载体,负载K_2CO_3制得负载型固体碱催化剂,并用于催化食用菜籽油制生物柴油的反应。考察甲醇与菜籽油物质的量比、反应时间和反应温度对催化性能的影响,结果表明,在甲醇与菜籽油物质的量比10∶1、反应温度60℃、反应时间6 h和催化剂用量为油质量的5%条件下,生物柴油产率最高,为82.4%,且催化剂可重复使用,具有稳定的催化作用。  相似文献   

4.
采用共沉淀法制备纳米Fe3 O4-PO3-4/ZrO2固体酸催化剂,利用X-射线衍射(XRD)、N2吸脱附、红外光谱(FTIR)和热重分析(TG)对催化剂的结构进行表征,探讨了纳米Fe3 O4加入量、焙烧温度和时间对固体酸催化剂性能的影响.考察了纳米Fe3 O4负载量、醇油摩尔比、反应温度和反应时间对制备文冠果生物柴油...  相似文献   

5.
采用共沉淀法制备纳米Fe_3O_4-PO■/ZrO_2固体酸催化剂,利用X-射线衍射(XRD)、N_(2 )吸脱附、红外光谱(FTIR)和热重分析(TG)对催化剂的结构进行表征,探讨了纳米Fe_3O_4加入量、焙烧温度和时间对固体酸催化剂性能的影响。考察了纳米Fe_3O_4负载量、醇油摩尔比、反应温度和反应时间对制备文冠果生物柴油的影响。结果表明,当Zr(OH)_4与纳米Fe_3O_4摩尔比为3∶1,焙烧温度为750℃,焙烧时间为3 h时,纳米Fe_3O_4-PO■/ZrO_2固体酸催化剂的催化性能最佳,生物柴油酯化率达85.4%。当催化剂的用量为油重的1%,醇油摩尔比为9∶1,反应温度为80℃和反应时间为4 h时,文冠果生物柴油的转化率可达到92.8%。  相似文献   

6.
采用浸渍法制备了K2CO3/SiO2固体碱催化剂,运用X射线粉末衍射仪对催化剂进行了分析表征。探究了反应时间、K2CO3负载量、醇油物质的量比、焙烧温度、催化剂用量和焙烧时间6个因素对生物柴油产率的影响。探究结果显示,在大豆油制取生物柴油时,最优的条件是:K2CO3负载量70%、焙烧温度600℃、焙烧时间4 h、反应时间是4 h、催化剂用量3%、醇油物质的量比9∶1。此时产物的产率是94.7%。  相似文献   

7.
以MCM-41为载体负载Na2CO3制备Na2CO3/MCM-41型酯交换催化剂,用于催化大豆油制备生物柴油。并研究了催化剂用量、反应物的摩尔比、反应温度和反应时间等因素对该反应的影响。结果表明,最佳反应条件是n(甲醇)∶n(大豆油)=16∶1,催化剂用量为大豆油质量的3%,反应温度为60℃,反应时间为3 h条件下,酯交换转化率可达35%以上。  相似文献   

8.
以镁铝水滑石为前驱体,经焙烧后得到的镁铝复合氧化物为载体,制备了负载型K2CO3/Mg-Al-O固体碱催化剂,并用于大豆油酯交换合成生物柴油反应中。研究了活性组分K2CO3负载量对催化剂结构和性能的影响。结果表明,在K2CO3负载量为30%时,形成的钾铝氧化物种是催化剂强碱中心和活性提高的主要原因。考察了反应条件对催化剂性能的影响,在反应温度60℃、时间6 h、醇油摩尔比12∶1和催化剂用量2.0%的条件下,生物柴油收率最高为88.5%,催化剂具有较好的稳定性。  相似文献   

9.
张云  傅吉全 《工业催化》2017,25(1):48-53
以可溶性淀粉为碳源、三嵌段共聚物F127为模板剂和K_2CO_3为活化剂,采用一步合成法制备系列淀粉基碳分子筛。通过扫描电子显微镜和N_2吸附-脱附分析淀粉基碳分子筛孔隙形貌和孔结构,采用热重-TG和傅里叶红外光谱表征原料和样品的物质结构官能团。结果表明,K_2CO_3浓度、F127添加比例、反应时间和反应温度影响淀粉基碳分子筛的孔隙结构。在炭化温度800℃、K_2CO_3浓度为0.50 mol·L~(-1)、F127与淀粉质量比=1∶3、反应温度50℃和反应时间12 h条件下制备的淀粉基碳分子筛,孔径集中于0.63 nm,比表面积为1 069.290 4 m~2·g~(-1),单点孔容0.667 901 cm~3·g~(-1)。  相似文献   

10.
经过长期摸索,总结出一套不揭盖处理CO2压缩机低压缸内部K2CO3结垢的方法。  相似文献   

11.
《应用化工》2022,(6):1563-1568
以丙烯酰胺(AM)、丙烯酸(AA)和文冠果活性炭(XSBAC)为原料,制备文冠果活性炭水凝胶(XSBACH),并应用于亚甲基蓝(MB)的吸附。利用比表面积分析仪(BET)、红外光谱仪(FTIR)等设备对XSBACH的结构进行表征。探讨了亚甲基蓝溶液的浓度、pH值、温度及时间对XSBACH吸附量的影响。结果表明,在吸附时间为120 min, MB溶液浓度为500 mg/L,反应温度为303 K时,XSBACH对MB的吸附量最大,为295.36 mg/g。吸附过程符合伪二级动力学模型,等温吸附过程符合Langmuir吸附等温模型,在303~323 K温度范围内,XSBACH吸附MB的吉布斯自由能ΔG°<0、焓变ΔH°<0、熵变ΔS°<0,表明XSBACH吸附MB是一个自发的放热过程。  相似文献   

12.
《应用化工》2022,(1):81-85
采用乙醇浸提法,提取蔓越莓原花青素,通过体外抗氧化实验测定其抗氧化活性。结果表明,蔓越莓原花青素的最佳提取条件为:乙醇浓度65%,料液比1∶15 g/m L,提取时间30 min,提取温度70℃。蔓越莓原花青素提取液具有较好的清除超氧阴离子能力以及还原能力。  相似文献   

13.
文冠果壳活性炭的结构表征及吸附Cu~(2+)的研究   总被引:2,自引:0,他引:2  
《应用化工》2017,(1):81-85
以废弃的文冠果壳为原料,通过H_3PO_4活化法制备高比表面积活性炭。利用N_2吸脱附、SEM、XRD和FTIR对文冠果壳活性炭结构进行了表征。分析了其吸附热力学性质和动力学特性,初步探讨了吸附机理。结果表明,活性炭含有丰富的微孔和中孔结构,总比表面积为1 364.596 m~2/g,平均孔径为1.62 nm;活性炭对Cu~(2+)的吸附等温线符合Langmuir模型,其吸附动力学过程以准二级动力学方程拟合效果最好;在303~323 K温度范围内,活性炭吸附Cu~(2+)的吉布斯自由能ΔG00、焓变ΔH00、熵变ΔS00,表明活性炭对Cu~(2+)吸附是一个自发的吸热过程。  相似文献   

14.
为提高催化剂的性能,在CO_2、甲醇和环氧丙烷合成碳酸二甲酯和碳酸丙烯酯反应的催化剂Na_2SiO_3/MgO中加入K_2CO_3,制得不同K_2CO_3质量分数的Na_2SiO_3-K_2CO_3/MgO催化剂。采用N_2吸附脱附、XRD、SEM和CO_2-TPD等表征方法对催化剂的孔结构、活性组分分布、表面形貌和活性位数量进行了测定;通过间歇反应釜对催化剂性能进行了评价;对反应条件进行了优化。当K_2CO_3的质量分数为17.5%时,催化剂具有较大的比表面积和孔容、较好的活性组分分布、较优的表面形貌、较多的催化活性碱位,并表现出较优的催化性能。在反应温度180℃、反应压力2.0 MPa、反应时间5 h、甲醇和环氧丙烷体积比为1.5∶1、搅拌转速200 r/min条件下,环氧丙烷的转化率达98.86%,碳酸二甲酯的选择性达54.67%,碳酸丙烯酯的选择性达30.89%,且催化剂的性能稳定。  相似文献   

15.
《应用化工》2022,(6):1413-1417
以牡丹花茶饮料生产末端残渣(以下简称茶渣)为原料,以2 mol/L碳酸钾溶液为活化剂,制备茶渣活性炭。研究了剂料比、活化温度、活化时间对茶渣活性炭吸附性能的影响。结果表明,碳酸钾法制备残渣活性炭的最佳工艺参数为:碳酸钾/茶渣剂料比1∶1.5(质量比)、活化温度500℃、活化时间1 h,所得活性炭水分、灰分、得率、碘吸附值分别为4.67%,3.10%,9.89%,931.93 mg/g。接近于国家一级活性炭对碘吸附值的要求标准1 000 mg/g。pH=5时,茶渣活性炭对于苯酚最大吸附量和吸附率分别达到9.35 mg/g,吸附率94%。  相似文献   

16.
竹制活性炭作为催化剂载体的研究   总被引:1,自引:0,他引:1  
利用SEM、N2-物理吸附和联碱滴定法等表征手段系统比较了竹质活性炭和普通竹炭与其他材质活性炭在物化性能方面的异同,同时利用CO-化学吸附考察了这些材料作为催化剂载体对负载钯催化剂金属钯分散度的影响。实验结果表明,竹质活性炭在比表面积、孔结构、灰分含量和表面基团等物化性能方面都已具备作为催化剂载体的条件,显示出成为新催化剂载体的潜力。  相似文献   

17.
用邻苯二甲酰亚胺和3-氯丙炔反应制备N-丙炔基邻苯二甲酰亚胺。以正交实验设计的方法对N-丙炔基邻苯二甲酰亚胺的合成反应温度、反应时间、投料比以及相转移催化剂进行工艺条件优化,得出最佳工艺条件是反应温度60℃、反应时间6h、n(邻苯二甲酰亚胺)∶n(碳酸钾)∶n(四丁基氯化铵)为1∶1.25∶0.05,收率91.7%。  相似文献   

18.
制备活性炭负载K2CO3用于催化餐饮废油合成生物柴油   总被引:1,自引:0,他引:1  
黎先发  罗学刚 《化工进展》2015,34(2):376-380
以K2CO3为催化剂,工业碱木质素(KL)为活性炭(AC)前体,在管式电阻炉中经一步共混活化(K2CO3/KL质量比为0.6、活化温度800℃、N2流量100cm3/min、活化时间2h)制备K2CO3/AC固体碱催化剂,用于餐饮废油与甲醇的酯交换反应合成生物柴油。对制备的固体碱催化剂进行了X-射线衍射(XRD)、BET表面积及扫描电镜(SEM)表征。考察了反应温度、催化剂用量、反应时间、醇油摩尔比等因素对餐饮废油转化为生物柴油产率的影响。结果表明当反应时间2h、反应温度60℃、醇油摩尔比15:1、催化剂为原料油质量的3.0%时,生物柴油最大产率为87.5%。考查了催化剂的循环利用效果,结果表明催化剂能循环利用3次,第3次利用时生物柴油的产率仍达到80.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号