首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
页岩气井压裂后的环空带压问题严重影响页岩气安全高效开发,且低弹性模量水泥浆体系及环空加压固井工艺有效降低页岩气井环空带压力的力学机理尚未明确。为此,针对页岩气井水平段和垂直段井筒结构差异,考虑水泥石残余应变,建立了环空加压固井提高水泥环界面径向应力与密封能力的计算方法,分析了环空加压压力和残余应变对界面径向应力的影响规律。研究结果表明:页岩气井压裂过程中套管内压周期变化将导致水泥环内外界面产生较大的径向循环载荷,进而引起水泥环残余应变和界面微环隙,最终造成水泥环密封完整性失效;针对不同水泥环残余应变值需控制环空加压压力下限以满足界面密封能力要求,环空加压固井增强垂直段水泥环密封能力的效果显著大于水平段的效果。现场应用效果显示,提供的模型计算结果与现场实际相符,可为该技术工程推广及应用提供理论支持。  相似文献   

2.
为解决页岩气井环空带压的问题,进行了压裂及生产过程中温度和压力变化对页岩气井环空带压影响的力学分析。以弹性力学为基础,建立了页岩气井直井段双层套管系统的力学模型,基于界面上应力相等及位移连续条件,推导了各界面的径向应力计算方程,并讨论了套管内压、温度、地应力等因素对水泥环封隔能力的影响规律。研究结果表明:温度升高、内压及地应力增大、水泥环弹性模量增大均有利于提高水泥环的封隔能力,减小套管壁厚有利于增加界面的径向应力;随着井深的增加,界面径向应力变大,水泥环封隔能力增强,提高直井段下部水泥环的封隔能力是降低井口环空带压风险的关键;第一界面和第二界面是固井失效的危险点,提高第一、第二界面的固井质量,有利于降低形成环空带压的风险。   相似文献   

3.
深层页岩气水平井环空带压问题较为普遍,套管-水泥环界面处微环隙是导致环空带压的主要原因。针对该问题,运用力学实验手段和数值模拟方法,分析了预应力固井条件下微环隙的产生与发展,明确了不同预应力条件下水泥环耐受压裂段数。结果表明:套管内压越小,水泥环保证密封完整性时可承受的循环载荷次数越多;循环载荷作用下微环隙宽度为30.89μm是发生气窜的临界值。预应力固井显著降低了初次塑性变形量,增大了塑性变形增量;考虑预应力作用下套管产生的径向预应变,预应力固井技术显著降低了微环隙的宽度,增加了多级压裂过程中水泥环密封完整性的耐受压裂段数。预应力值越高,微环隙出现前的耐受压裂段数越多;压裂段数相同的情况下,预应力越大水泥环微环隙越小。现场应用结果表明,采用预应力固井技术及低弹性模量水泥浆,可以有效缓解深层页岩气水平井套管环空带压现象。研究结果可为页岩气水平井固井提供技术支持。  相似文献   

4.
随着页岩气大规模开发,针对提高页岩气水平井固井质量的研究逐渐增多,但同期页岩气井环空带压情况并未缓解,对页岩气田的安全生产提出了严峻挑战。为解决页岩气井环空带压难题,建立了水泥环密封完整性评价装置,针对JY页岩气田开展了水泥环密封完整性影响因素分析,并相应形成了预防环空带压固井技术。研究认为水泥石胶结差和体积收缩导致早期环空带压,而分段压裂及生产参数变化对水泥石胶结和本体的破坏是页岩气井环空带压的最主要原因。预防环空带压固井技术在JY页岩气田进行了推广应用,压裂投产后带压井比例下降了82%,有效解决了页岩气井环空带压难题,提高了页岩气井水泥环长期密封完整性,保障了页岩气田安全开发。  相似文献   

5.
页岩气井井筒完整性若干研究进展   总被引:7,自引:0,他引:7  
在页岩气开发工程中遭遇了井筒完整性问题,主要包括页岩气井水泥环密封失效引起的环空带压问题和页岩气井压裂过程中的套管变形问题。基于目前已有的相关研究成果,总结分析了页岩气井井筒完整性失效问题的相关研究进展情况。随着国内外学者对页岩气井压裂过程中套管变形研究的逐渐深入,认为页岩气井套管变形的主要影响因素包括压裂过程中的温度应力、储层非对称压裂、固井质量差及断层或裂缝滑动等。其中,压裂过程中断层或裂缝滑动造成的页岩气井套管剪切变形机理已经受到越来越多的研究人员关注,并提出可以通过提高套管强度和固井质量、避开断层或裂缝滑动区域来有效降低套管变形的技术对策。页岩气井水泥环密封失效主要由套管内压变化和套管偏心引起的水泥环屈服破坏、界面裂缝引起的窜流等问题造成的,通过采用膨胀水泥、柔性水泥及环空预应力等技术措施可有效减小水泥环密封失效的风险。通过优化设计页岩气井的特殊水泥浆体系,对于有效提高页岩气井水泥环密封完整性具有重要意义。考虑到水泥浆固井密封能力的局限性,还可以附加考虑在井眼环空局部采用机械密封方法达到密封完整性要求。关于页岩气井井筒完整性的研究结果,对于通过体积压裂完井的其它非常规油气井工程相关设计控制也具有重要的参考意义。  相似文献   

6.
塔里木油田库车山前构造白垩系储层埋藏深,温度压力高,地层复杂,裂缝发育,安全固井密度窗口窄,油气活跃,整体固井质量较差,固完井后环空易气窜,严重影响后期安全生产。文中在分析库车山前构造白垩系储层固井难点的基础上,针对性地提出了提高库车山前高温高压储层环空密封能力固井技术,从变排量注替设计、防漏堵漏水泥浆体系、环空辅助密封工具应用3个方面综合提高固井后的环空密封能力,并在KS地区某井进行了配套技术的现场应用。现场应用表明:提高库车山前构造高温高压储层环空密封能力的固井技术,能够有效解决该地区储层固井易漏失、固井质量差、环空气窜等固井难题,为类似复杂易漏深井储层尾管固井提供了宝贵的经验。  相似文献   

7.
陶谦 《钻采工艺》2018,41(3):25-28
高压气井环空带压现象普遍,迫切需要开展高压气井水泥环密封失效机理及预防措施研究。基于水泥石性能演化规律及气井温压场变化特点,开展了高温高压条件下水泥环密封失效试验,分析了不同龄期水泥水化产物、孔隙结构、力学性能及胀缩特性的演化机制,研究了周期载荷下温度压力对水泥环密封能力的影响规律。
结果表明:水泥石干缩及周期性温压变化是导致长龄期水泥环密封失效的主要原因;通过改善水泥石收缩特性、控制水泥石渗透率、增强水泥石力学性能,可有效降低环空带压现象,提高水泥石长期密封能力。研究成果可望为高压气井水泥石性能优化及固井技术完善提供参考与指导。  相似文献   

8.
目前井筒完整性的相关研究大都未考虑温度的影响,也没有成形的、针对套管和水泥环统一的失效风险评价方法。为此,以深水高温高压完井测试井筒为研究对象,基于参数不确定性影响进行研究,建立一套综合考虑套管和水泥环的井筒完整性失效风险评价方法。研究结果表明:所得评价方法对风险具有较高敏感性,提高套管强度会降低套管失效风险,而环空圈闭压力只重点影响封固井段风险;水泥环的抗压和抗拉失效分别造成固井界面微环隙和本体径向裂缝,弹性模量与泊松比分别主要影响水泥环的抗压与抗拉失效风险,可以通过增大水泥环材料韧性来提高水泥环密封。研究结论可为井筒完整性的保护和深水高温高压完井测试作业的顺利进行提供理论指导。  相似文献   

9.
固井微环空成因研究进展及解决方法   总被引:2,自引:0,他引:2  
现场实践表明,固井后初期封固系统层间封隔性能良好,随后也会出现封固失效问题,分析其原因之一是固井微环空问题。文章就固井微环空问题,给出了固井微环空的广泛定义 认为微环空主要出现在固井一、二界面,水泥石体积收缩、温度变化、压力变化、工程因素等导致一界面微环空出现,滤饼存在和水泥石体积收缩等因素是导致二界面微环空出现的原因 并回顾了前人对微环空理论的研究及国内外微环空解决技术 提出通过加强对微环空形成机理研究、水泥浆体系优化、微环空自封堵水泥技术开发、相关配套工具和措施的应用来防止微环空出现或封堵微环空,为微环空问题研究及其解决指明了方向。  相似文献   

10.
《石油机械》2015,(4):22-27
针对油井长期服役过程中的固井界面微间隙产生机理及规律问题,对比国外学者的经典试验,利用ABAQUS有限元软件对套管内压交变作用下的固井界面力学响应进行了模拟分析。分析结果表明,当套管和水泥环应力均处在弹性范围内时,没有微间隙产生;而在高应力作用下水泥环中存在塑性残余变形时,套管内压交替变化将导致套管、水泥环和地层界面变形不再协调,将可能脱开产生微间隙。因此得出结论:套管内压交变作用下的水泥环塑性残余变形是导致微间隙产生的主要原因之一。进一步对影响微间隙尺寸的关键因素及规律进行分析,指出套管内压值越大,产生微间隙的可能性就越大,套管内交变压差越大,微间隙的尺寸就越大;在套管内交变压力作用下,软地层比硬地层固井界面更容易产生微间隙;同时,选用低弹性模量水泥固井界面产生微间隙的可能性则会降低。研究结果对环空带压和环空窜流的产生原因及预防具有重要意义。  相似文献   

11.
水泥环力学参数与载荷间的适应性   总被引:1,自引:0,他引:1  
为选择水泥环力学参数,保障水泥环封固效能,利用套管- 水泥环- 地层组合体结合有限元力学模型,研究了蠕变地层不同井深条件下水泥环屈服强度、弹性模量、载荷对界面应力及破坏形式的影响,分析了强度、弹性模量与载荷的力学适应性关系。结果表明:套管内加载时井口处水泥环易于发生周向拉伸破坏,井下水泥环则易于发生屈服和出现高的压应力。加载中水泥环发生弹性变形时,水泥环屈服强度对界面各应力不产生影响;弹性模量增加,界面各应力增加。水泥环发生屈服变形时,水泥环屈服强度增加,界面各应力均增大;弹性模量增加,界面接触压力增大,内界面周向应力降低;卸载时井口处水泥环易于发生胶结界面撕裂。水泥环具有低弹性模量、适当屈服强度、高抗拉强度、高胶结界面强度时承载能力高。  相似文献   

12.
针对压裂过程中射孔段水泥环完整性失效,导致压裂中出现环空窜流,从而无法有效改善储层渗流能力的问题,通过建立射孔段套管-水泥环有限元模型,对压裂过程中射孔段水泥环力学响应进行了分析,并研究了不同射孔参数对射孔段水泥环的力学影响规律。结果表明:压裂过程中射孔段水泥环孔眼周围存在明显的应力集中和孔间应力干扰现象;压裂过程中固井一界面较二界面更容易产生密封性问题;射孔段水泥环应力分布与射孔相位角有密切关系,应尽量选取90°相位角螺旋射孔方式射孔;射孔孔径的增加对射孔段水泥环应力分布影响不大,为增加单孔泄油面积,可在小范围内增加射孔孔径;射孔密度对水泥环应力的影响要大于射孔孔径,但射孔密度超过16孔/m以后应力增加幅度会减小,且影响都在一个数量级以内,在有效控制水泥环射孔损伤的前提下可有限度地增加射孔密度。该研究可为压裂射孔方案制定提供理论依据。  相似文献   

13.
油气井套管试压、压裂等施工作业过程中,套管—水泥环—地层固结体将产生应力与变形响应。过高的载荷作用下,可能会造成水泥环本体破坏、胶结界面撕开等结构破坏形式,危及水泥环的封固效果。应用力学原理及有限元理论,建立了套管—水泥环—地层固结体力学模型,分析了水泥环弹性常数对固结体结构完整性的影响。研究结果表明,水泥环弹性模量较小时,变形能力强,载荷作用下不易于产生结构破坏,卸载后抗撕裂能力较好;高地应力地层条件下,泊松比越小水泥环抗破坏能力越强;低地应力地层,泊松比越大胶结界面抗撕开能力越好。工程中应根据封固井深等具体情况综合考虑加载、卸载两种载荷作用方式对水泥环弹性参数进行优选。  相似文献   

14.
基于水泥石实验数据的水泥环力学完整性分析   总被引:4,自引:0,他引:4  
气井环空带压是高温、高压、高酸性气井开发中面临的一个重要难题。为此,针对从固井到生产作业中影响固井水泥环力学完整性的问题,采用弹塑性力学理论,建立套管-水泥环-地层系统耦合力学模型,求解水泥环Tresca应力和径向位移。结合龙岗气田X井尾管固井水泥石三轴应力实验获得的弹性模量、泊松比、抗压强度、屈服应变等岩石力学参数,进行了尾管固井段水泥环力学完整性评价:①固井初期,同一井深处,井筒内压力越大,水泥环受到Tresca应力和水泥环径向位移越大;相同内压下,随着井深的增大,水泥环受到的Tresca应力变化很小,但水泥环径向位移增加较为明显。②生产阶段,由于井筒内压力逐渐降低,水泥环受拉应力作用,水泥环移动方向与固井初期移动方向相反,随着压力的降低,在同一井深处,水泥环受到的Tresca应力和水泥环径向位移都变大;随着井深的增加,Tresca应力和径向位移逐渐增大。评价结论认为该井测试及生产期间不会引起尾管段水泥环力学完整性失效。  相似文献   

15.
井内压力变化对水泥环密封完整性的影响及对策   总被引:7,自引:0,他引:7  
川渝气区的部分井因井内压力大幅度改变,导致水泥环密封完整性失效而发生气窜,引起环空带压。为此,考虑水泥环初始应力状态及井内压力变化特点,建立了水泥环力学模型,论述了页岩气井管柱试压和大型体积压裂、川中高压气井固井后大幅度降低钻井液密度、地下储气库井周期性注采作业等典型工况下水泥环密封完整性可能破坏的形式。研究结果表明:试压和压裂可能导致水泥环周向拉伸破坏,形成径向裂缝;井内压力大幅度降低,使套管壁处水泥环承受的径向拉应力超过抗拉强度,破坏界面胶结,形成微环隙;周期性交变载荷可能引起水泥环疲劳破坏。相应的针对性技术对策为:根据后期作业井内压力变化,选用力学性能匹配的弹性水泥浆或柔性自应力水泥浆;常规套管固井在碰压后立即进行管柱试压;固井后井内压力大幅度下降的井,应用径向预应力固井技术和封隔器防止气窜。  相似文献   

16.
胶乳对水泥石三轴力学形变能力的作用   总被引:2,自引:0,他引:2  
针对套管、水泥环、地层三者间形变不协调而引起油气井生产后期层间封隔失效的问题,采用美国GCTS公司三轴岩石力学测试系统RTR-100,准确地测定了在三轴应力直接加载及三轴应力多周循环两种加载方式下水泥石的力学形变能力。实验结果表明,水泥浆中添加一定量的SBR胶乳,在降低油井水泥石抗压强度的同时增大了油井水泥石在低应力作用下的弹性形变和在高应力下的塑性形变,提高水泥石抗冲击破坏的能力。  相似文献   

17.
为准确量化循环载荷对井筒水泥环密封性的影响,基于页岩气井多级压裂过程中套管内压多次升高和降低的实际情况,开展了高温三轴循环载荷作用下水泥石岩心应力-应变试验,建立了套管-水泥环-地层组合体数值模型,基于Mohr-Coulomb准则和损伤理论,计算了多级压裂过程中循环载荷作用下水泥环内边界处等效塑性应变量.分析结果表明:...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号