首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes an approaching method to compute the straightest path between two vertices on meshes. An initial cutting plane is first constructed using the normal information of the source and destination vertices. Then an optimal cutting plane is iteratively created by comparing with previous path distance. Our study shows that the final straightest path based on this optimal cutting plane is more accurate and insensitive to the mesh boundary. Furthermore, we apply the straightest path result to compute the measured boundary in the parameter domain for mesh parameterization, and we obtain a new computing formula for vertex stretch in the planar parameterization. Experimental results show that our parameterization method can effectively reduce distortions.  相似文献   

2.
为了快速地对3维网格模型进行简化,提出了一种曲率自适应的3维网格简化算法,该算法首先将原始网格投影至参数平面上,并构造反映原始网格曲率分布的平面曲率灰度分布,用以表征简化过程中对网格各部分不同的采样密度要求;然后根据等曲率灰度分割的原则来对参数平面进行二叉树剖分,以构造反映其不均匀分布的非均衡二叉树结构,并依此选取简化后的网格顶点集合,以构造简化的三角网格.该算法的优点是执行速度快,同时在简化过程中仍能充分保持原始网格的细节.  相似文献   

3.
In this paper, we propose a novel partwise framework for cross-parameterization between 3D mesh models. Unlike most existing methods that use regular parameterization domains, our framework uses nonregular approximation domains to build the cross-parameterization. Once the nonregular approximation domains are constructed for 3D models, different (and complex) input shapes are transformed into similar (and simple) shapes, thus facilitating the cross-parameterization process. Specifically, a novel nonregular domain, the convex hull, is adopted to build shape correspondence. We first construct convex hulls for each part of the segmented model, and then adopt our convex-hull cross-parameterization method to generate compatible meshes. Our method exploits properties of the convex hull, e.g., good approximation ability and linear convex representation for interior vertices. After building an initial cross-parameterization via convex-hull domains, we use compatible remeshing algorithms to achieve an accurate approximation of the target geometry and to ensure a complete surface matching. Experimental results show that the compatible meshes constructed are well suited for shape blending and other geometric applications.  相似文献   

4.
目的 高质量四边形网格生成是计算机辅助设计、等几何分析与图形学领域中一个富有挑战性的重要问题。针对这一问题,提出一种基于边界简化与多目标优化的高质量四边形网格生成新框架。方法 首先针对亏格非零的平面区域,提出一种将多连通区域转化为单连通区域的方法,可生成高质量的插入边界;其次,提出"可简化角度"和"可简化面积比率"两个阈值概念,从顶点夹角和顶点三角形面积入手,将给定的多边形边界简化为粗糙多边形;然后对边界简化得到的粗糙多边形进行子域分解,并确定每个子域内的网格顶点连接信息;最后提出四边形网格的均匀性和正交性度量目标函数,并通过多目标非线性优化技术确定网格内部顶点的几何位置。结果 在同样的离散边界下,本文方法与现有方法所生成的四边网格相比,所生成的四边网格顶点和单元总数目较少,网格单元质量基本类似,计算时间成本大致相同,但奇异点数目可减少70% 80%,衡量网格单元质量的比例雅克比值等相关指标均有所提高。结论 本文所提出的四边形网格生成方法能够有效减少网格中的奇异点数目,并可生成具有良好光滑性、均匀性和正交性的高质量四边形网格,非常适用于工程分析和动画仿真。  相似文献   

5.
任意拓扑三角形网格的全局参数化   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种零亏格的任意拓扑流形三角形网格自动全局参数化方法 .算法首先采用顶点对合并的网格简化方法构造一个网格的累进表示 ,在进行网格简化的同时 ,对被删除的顶点相对于顶点合并操作所得到的新顶点的邻域进行局部参数化 ,由此得到一个带局部参数化信息的累进网格 ;然后将网格简化所得到的基网格进行中心投影到一个单位球面上 ,并采用累进恢复的方法将删除的顶点按与删除时相反的顺序逐次添加回网格上来 ,所添加顶点的坐标不再是其删除前的坐标值 ,而是由局部参数化信息计算得到 ,并且保证是位于单位球面上的 .由此得到原始网格的单位球面参数化网格  相似文献   

6.
We propose a connectivity editing framework for quad‐dominant meshes. In our framework, the user can edit the mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four neighbors) and irregular faces (non‐quads). We provide a theoretical analysis of the problem, discuss what edits are possible and impossible, and describe how to implement an editing framework that realizes all possible editing operations. In the results, we show example edits and illustrate the advantages and disadvantages of different strategies for quad‐dominant mesh design.  相似文献   

7.
网格模型的拼接和融合是3维形状编辑和造型中的一个重要方面。基于Hermite插值技术,提出了一种适用于具有一般边界点空间分布的三角网格模型之间无缝光滑拼接和融合方法。首先查找网格模型待拼接区域的边缘点集,并利用二次B样条曲线插值边缘点集分别得到边缘曲线;然后对边缘曲线进行Hermite插值得到拼接区域连续曲面;最后对拼接曲面分别进行三角网格化和Laplacian光顺平滑处理以实现网格模型的光滑拼接和融合。由于利用B样条曲线插值待拼接模型边界,本文方法适用于具有各种不同边界情形的网格模型拼接和融合,它不仅仅可以处理平面边界曲线情形也可以处理空间边界曲线情形。结合Hermite曲面插值拼接过渡区域,使得产生的拼接网格能光滑地衔接待拼接模型。实验结果表明,本文方法能够有效地实现三角网格模型的光滑拼接、模型修复和模型融合。  相似文献   

8.
网格模型的拼接和融合是3维形状编辑和造型中的一个重要方面。基于Hermite插值技术,提出一种适用于具有一般边界点空间分布的三角网格模型之间无缝光滑拼接和融合方法。首先查找网格模型待拼接区域的边缘点集,并利用二次B样条曲线插值边缘点集分别得到边缘曲线;然后对边缘曲线进行Hermite插值得到拼接区域连续曲面;最后对拼接曲面分别进行三角网格化和Laplacian光顺平滑处理以实现网格模型的光滑拼接和融合。由于利用B样条曲线插值待拼接模型边界,本文方法适用于具有各种不同边界情形的网格模型拼接和融合,它不仅仅可以处理平面边界曲线情形也可以处理空间边界曲线情形。结合Hermite曲面插值拼接过渡区域,使得产生的拼接网格能光滑地衔接待拼接模型。实验结果表明,本文方法能够有效地实现三角网格模型的光滑拼接、模型修复和模型融合。  相似文献   

9.
目的 3D形状分析是计算机视觉和图形学的一个重要研究课题。虽然现有方法使用基于图的卷积将基于图像的深度学习推广到3维网格,但缺乏有效的池化操作限制了其网络的学习能力。针对具有相同连通性,但几何形状不同的网格模型数据集,本文利用网格简化的边收缩操作建立网格层次结构,提出了一种新的网格池化操作。方法 本文改进了传统的网格简化方法,以避免生成高度不规则的三角形,利用改进的网格简化方法定义了新的网格池化操作。网格简化的边收缩操作建立的网格层次结构之间存在对应关系,有利于网格池化的定义。新定义的池化操作有效地编码了层次结构中较粗糙和较稠密网格之间的对应关系。最后提出了一种带有边收缩池化和图卷积的变分自编码器(variational auto-encoder,VAE)结构,以探索3D形状的隐空间并用于3D形状的生成。结果 由于引入了新定义的池化操作和图卷积操作,提出的网络结构比原始MeshVAE需要的参数更少,因此可以处理更稠密的网格模型。结论 实验表明提出的方法具有更好的泛化能力,并且在各种应用中更可靠,包括形状生成、形状插值和形状嵌入。  相似文献   

10.
We propose an algorithm for reconstructing regular meshes from unorganized point clouds. At first, a nearly isometric point parameterization is computed using only the location of the points. A mesh, composed of nearly equilateral triangles, is later created using a regular sampling pattern. This approach produces meshes with high visual quality and suitable for use with applications such as finite element analysis, which tend to impose strong constraints on the regularity of the input mesh. Geometric properties, such as local connectivity and surface features, are identified directly from the points and are stored independent of the resulting mesh. This decoupling preserves most details and allows more flexibility for meshing. The resulting parameterization supports several direct applications, such as texturing and bump mapping. In addition, novel boundary identification and cut parameterization algorithms are proposed to overcome the difficulties caused by cuts, non-closed surfaces and possible self-overlapping parameter patches. We demonstrate the effectiveness of our approach by reconstructing regular meshes from real datasets, such as a human colon obtained from CT scan and objects digitized using laser scanners.  相似文献   

11.
We introduce a new class of shape approximation techniques for irregular triangular meshes. Our method approximates the geometry of the mesh using a linear combination of a small number of basis vectors. The basis vectors are functions of the mesh connectivity and of the mesh indices of a number of anchor vertices. There is a fundamental difference between the bases generated by our method and those generated by geometry-oblivious methods, such as Laplacian-based spectral methods. In the latter methods, the basis vectors are functions of the connectivity alone. The basis vectors of our method, in contrast, are geometry-aware since they depend on both the connectivity and on a binary tagging of vertices that are "geometrically important" in the given mesh (e.g., extrema). We show that, by defining the basis vectors to be the solutions of certain least-squares problems, the reconstruction problem reduces to solving a single sparse linear least-squares problem. We also show that this problem can be solved quickly using a state-of-the-art sparse-matrix factorization algorithm. We show how to select the anchor vertices to define a compact effective basis from which an approximated shape can be reconstructed. Furthermore, we develop an incremental update of the factorization of the least-squares system. This allows a progressive scheme where an initial approximation is incrementally refined by a stream of anchor points. We show that the incremental update and solving the factored system are fast enough to allow an online refinement of the mesh geometry  相似文献   

12.
Connectivity compression techniques for very large 3D triangle meshes are based on clever traversals of the graph representing the mesh, so as to avoid the repeated references to vertices. In this paper we present a new algorithm for compressing large 3D triangle meshes through the successive conquest of triangle fans. The connectivity of vertices in a fan is implied. As each fan is traversed, the current mesh boundary is advanced by the fan-front. The process is recursively continued till the entire mesh is traversed. The mesh is then compactly encoded as a sequence of fan configuration codes. The fan configuration code comprehensively encodes the connectivity of the fan with the rest of the mesh. There is no need for any further special operators like split codes and additional vertex offsets. The number of fans is typically one-fourth of the total number of triangles. Only a few of the fan configurations occur with high frequency, enabling excellent connectivity information compression using range encoding. A simple implementation shows significant improvements, on the average, in bit-rate per vertex, compared to earlier reported techniques.  相似文献   

13.
This paper describes a novel approach to the parameterization of triangle meshes representing 2‐manifolds with an arbitrary genus. A topology‐based decomposition of the shape is computed and used to segment the shape into primitives, which define a chart decomposition of the mesh. Then, each chart is parameterized using an extension of the barycentric coordinates method. The charts are all 0‐genus and can be of three types only, depending on the number of boundary components. The chart decomposition and the parameterization are used to define a shape graph where each node represents one primitive and the arcs code the adjacency relationships between the primitives. Conical and cylindrical primitives are coded together with their skeletal lines that are computed from and aligned with their parameterization. The application of the parameterization approach to remeshing guarantees that extraordinary vertices are localized only where two patches share a boundary and they are not scattered on the whole surface.  相似文献   

14.
This paper addresses the problem of representing dynamic 3D meshes in a compact way, so that they can be stored and transmitted efficiently. We focus on sequences of triangle meshes with shared connectivity, avoiding the necessity of having a skinning structure. Our method first computes an average mesh of the whole sequence in edge shape space. A discrete geometric Laplacian of this average surface is then used to encode the coefficients that describe the trajectories of the mesh vertices. Optionally, a novel spatio‐temporal predictor may be applied to the trajectories to further improve the compression rate. We demonstrate that our approach outperforms the current state of the art in terms of low data rate at a given perceived distortion, as measured by the STED and KG error metrics.  相似文献   

15.
A new method for constructing a Catmull–Clark subdivision surface (CCSS) that interpolates the vertices of a given mesh with arbitrary topology is presented. The new method handles both open and closed meshes. Normals or derivatives specified at any vertices of the mesh (which can actually be anywhere) can also be interpolated. The construction process is based on the assumption that, in addition to interpolating the vertices of the given mesh, the interpolating surface is also similar to the limit surface of the given mesh. Therefore, construction of the interpolating surface can use information from the given mesh as well as its limit surface. This approach, called similarity based interpolation, gives us more control on the smoothness of the interpolating surface and, consequently, avoids the need of shape fairing in the construction of the interpolating surface. The computation of the interpolating surface’s control mesh follows a new approach, which does not require the resulting global linear system to be solvable. An approximate solution provided by any fast iterative linear system solver is sufficient. Nevertheless, interpolation of the given mesh is guaranteed. This is an important improvement over previous methods because with these features, the new method can handle meshes with large number of vertices efficiently. Although the new method is presented for CCSSs, the concept of similarity based interpolation can be used for other subdivision surfaces as well.  相似文献   

16.
《Computers & Graphics》2012,36(8):1072-1083
We introduce a new type of meshes called 5–6–7 meshes. For many mesh processing tasks, low- or high-valence vertices are undesirable. At the same time, it is not always possible to achieve complete vertex valence regularity, i.e. to only have valence-6 vertices. A 5–6–7 mesh is a closed triangle mesh where each vertex has valence 5, 6, or 7. An intriguing question is whether it is always possible to convert an arbitrary mesh into a 5–6–7 mesh. In this paper, we answer the question in the positive. We present a 5–6–7 remeshing algorithm which converts a closed triangle mesh with arbitrary genus into a 5–6–7 mesh which (a) closely approximates the original mesh geometrically, e.g. in terms of feature preservation and (b) has a comparable vertex count as the original mesh. We demonstrate the results of our remeshing algorithm on meshes with sharp features and different topology and complexity.  相似文献   

17.
This paper presents a new preconditioning technique for large‐scale geometric optimization problems, inspired by applications in mesh parameterization. Our positive (semi‐)definite preconditioner acts on the gradients of optimization problems whose variables are positions of the vertices of a triangle mesh in ?2 or of a tetrahedral mesh in ?3, converting localized distortion gradients into the velocity of a globally near‐rigid motion via a linear solve. We pose our preconditioning tool in terms of the Killing energy of a deformation field and provide new efficient formulas for constructing Killing operators on triangle and tetrahedral meshes. We demonstrate that our method is competitive with state‐of‐the‐art algorithms for locally injective parameterization using a variety of optimization objectives and show applications to two‐ and three‐dimensional mesh deformation.  相似文献   

18.
Fragile watermarking for authenticating 3-D polygonal meshes   总被引:2,自引:0,他引:2  
Designing a powerful fragile watermarking technique for authenticating three-dimensional (3-D) polygonal meshes is a very difficult task. Yeo and Yeung were first to propose a fragile watermarking method to perform authentication of 3-D polygonal meshes. Although their method can authenticate the integrity of 3-D polygonal meshes, it cannot be used for localization of changes. In addition, it is unable to distinguish malicious attacks from incidental data processings. In this paper, we trade off the causality problem in Yeo and Yeung's method for a new fragile watermarking scheme. The proposed scheme can not only achieve localization of malicious modifications in visual inspection, but also is immune to certain incidental data processings (such as quantization of vertex coordinates and vertex reordering). During the process of watermark embedding, a local mesh parameterization approach is employed to perturb the coordinates of invalid vertices while cautiously maintaining the visual appearance of the original model. Since the proposed embedding method is independent of the order of vertices, the hidden watermark is immune to some attacks, such as vertex reordering. In addition, the proposed method can be used to perform region-based tampering detection. The experimental results have shown that the proposed fragile watermarking scheme is indeed powerful.  相似文献   

19.
We present a technique for steganography in polygonal meshes. Our method hides a message in the indexed rep‐resentation of a mesh by permuting the order in which faces and vertices are stored. The permutation is relative to a reference ordering that encoder and decoder derive from the mesh connectivity in a consistent manner. Our method is distortion‐free because it does not modify the geometry of the mesh. Compared to previous steganographic methods for polygonal meshes our capacity is up to an order of magnitude better. Our steganography algorithm is universal and can be used instead of the standard permutation steganography algorithm on arbitrary datasets. The standard algorithm runs in Ω (n2 log2 n log log n) time and achieves optimal O(nlog n) bit capacity on datasets with n elements. In contrast, our algorithm runs in O(n) time, achieves a capacity that is only one bit per element less than optimal, and is extremely simple to implement.  相似文献   

20.
目前很多细分方法都存在不能用同一种方法处理封闭网格和开放网格的问题。对此,一种新的基于插值技术的LOOP曲面细分方法,其主要思想就是给定一个初始三角网格M,反复生成新的顶点,新顶点是通过其相邻顶点的约束求解得到的,从而构造一个新的控制网格M,在取极限的情况下,可以证明插值过程是收敛的;因为生成新顶点使用的是与其相连顶点的约束求解得到的,本质上是一种局部方法,所以,该方法很容易定义。它在本地方法和全局方法中都有优势,能处理任意顶点数量和任意拓扑结构的网格,从而产生一个光滑的曲面并忠实于给定曲面的形状,其控制  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号