首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Quasi-steady high-temperature current sheets are an energy source during the main or hot phase of solar flares. Such sheets are shown to be stabilized with respect to the tearing instability by a small transverse component of magnetic field existing in the sheets.  相似文献   

3.
Dispersion relations for the resistive tearing instability are analytically found in the hydromagnetic approximation for a current sheet with a small normal component of the magnetic field. A strong stabilizing influence of the normal component on the development of the tearing instability is shown to exist. These results are also obtained from physical considerations, and so a simple interpretation of the stabilization effect of the normal component is given. The results of the present paper are compared with those of previous works on the topic, and the previous negative results are explained.  相似文献   

4.
A simple self-consistent model of a high-temperature turbulent current sheet (HTCS) is considered. The anomalous character of plasma conductivity in a sheet is assumed to be due to gradient instabilities. The possibility of a low threshold of their excitation is demonstrated by an example of temperature-drift instability.Application of the HTCS model to the hot or main phase of a solar flare is discussed. The model consistently explains many observed properties of this phase.  相似文献   

5.
Simple self-consistent models for non-neutral current sheets are considered. Characteristics of high-temperature turbulent current sheets (HTCS) with a small transverse component of magnetic field are determined for conditions in the solar corona. The energy output of such an HTCS is much larger than that of a neutral sheet. This makes it possible to consider the HTCS as an energy source not only in long-lived X-ray loops but also in flaring loops during the not or main phase of a flare. In this case, the magnetic reconnection velocity agrees with the observed velocity of the loop rise. Thus, these phenomena can be interpreted as a result of magnetic reconnection, for example, between new flux emerging from under the photosphere and an old magnetic field.The role of a longitudinal magnetic field in a current sheet is less important for HTCS. As a result of the compression of a longitudinal field, there appears an electric current circulating around the sheet. This current may induce strong Joule heating, if the compression is large. This additional heating is realized because of the annihilation of the main component, not the longitudinal component of magnetic field. The effect is small for HTCS, but may be significant for preflare current sheets.  相似文献   

6.
The active region associated with Mt. Wilson sunspot group 18 935 (McMath, 11 976) which had a central meridian passage on August 4 and 5, 1972 produced a number of flares during transit. These included two importance 3B flares on August 4 and 7 as well as several of importance 1 and 2. Calculations of the total magnetic flux in this region were made during the period July 31 through August 9 using data from six observatories. For the 3B flare on August 4, the total flux changed from about 7.2 × 1022 Mx just before onset to about 5.6 × 1022 Mx two hours after onset. For the 3B flare on August 7, the flux was about 6.4 × 1022 Mx three hours before onset and about 5.2 × 1022 Mx three hours after onset. An importance 2B flare on August 2 had no measurable effect on the flux nor did any of several 1N or 1B flares which also occurred in this region during the period. The flux changes measured for the 3B flares occurred in the umbral and penumbral fields and no significant changes were observed in facular fields.The Aerospace Corporation, P.O. Box 92957, Los Angeles, Calif. 90009, U.S.A.  相似文献   

7.
E. Schatzman 《Solar physics》1967,1(3-4):411-419
Some ideas are developed concerning solar flares which have been presented earlier by the author (Schatzman, 1966a). Emphasis is laid on the problem of energy transport; from the energy supply to the region of the optical flare, on the storage of low energy cosmic ray particles in a magnetic bottle before the beginning of the optical flare, and the mechanism which triggers both the optical flare, and the production of high-energy cosmic rays. The relation between solar and stellar flares is considered.Lecture given at Goddard Space Flight Center, November 4, 1966.  相似文献   

8.
A theory of two-ribbon solar flares is presented which identifies the primary energy release site with the tops of the flare loops. The flare loops are formed by magnetic reconnection of a locally opened field configuration produced by the eruption of a pre-flare filament. Such eruptions are commonly observed about 15 min prior to the flare itself. It is proposed that the flare loops represent the primary energy release site even during the earliest phase of the flare, i.e., the flare loops are in fact the flare itself.Based upon the supposition that the energy release at the loop tops is in the form of Joulean dissipation of magnetic energy at the rising reconnection site, a quantitative model of the energy release process is developed based upon an analytic reconnecting magnetic field geometry believed to represent the basic process. Predicted curves of energy density vs time are compared with X-ray observations taken aboard Skylab for the events of 29 July, 13 August, and 21 August in 1973. Considering the crudity of the model, the comparisons appear reasonable. The predicted field strengths necessary to produce the observed energy density curves are also reasonable, being in the range 100–1000 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
Statistical tests, based on the maximum-likelihood method, have been performed on flare series extending over several years. If all flares in each plage region are taken into account, a rich spectrum is obtained. If one carries out similar analysis of a reduced flare series, which includes at most one flare from each plage region, the spectrum is almost devoid of structure, and what structure does remain is not statistically significant. The inference is that solar activity does not display genuine rigid-rotation modulation, but that repeated events from individual centers of activity yield modulation which may be mistaken for rigid-rotation modulation.A test for correlation between reduced flare series for the northern and southern hemispheres gives no significant correlation. This test therefore yieds no support to the hypothesis that solar activity is modulated by planetary effects.Department of Statistics.  相似文献   

10.
Polarimetric study of solar flares   总被引:1,自引:0,他引:1  
E. Vogt  J. C. Hénoux 《Solar physics》1996,164(1-2):345-359
The theory of impact polarization is briefly reviewed. Spectropolarimetry provides a tool to derive the nature, the number flux, and the main characteristics of the angular velocity distribution function of energetic particles accelerated in solar flares. As an exemple of application of polarimetry the spatial and temporal characteristics of the linear polarization of the hydrogen H line observed in a solar flare is presented.  相似文献   

11.
The current status of our knowledge on the theory of radio emission from mildly relativistic electrons and its application in the interpretation of solar radio bursts are reviewed. The recent high spatial resolution microwave observations have given important information about the geometry of the emitting region and have helped in the computation of better inhomogeneous models that reproduce qualitatively several observational characteristics of the emission. The limitations of the observations and the theory (particularly the effect of mode coupling on the observed polarisation) are pointed out and the potential of the gyrosynchrotron process as a diagnostic of the physical conditions is discussed. This will help us to obtain quantitative information about the changes of the magnetic field and the acceleration of particles in solar flares.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

12.
Extensive observations of solar flares made in high energy bands during the maximum of the present solar cycle are discussed with a special reference to the results from HINOTORI, and with attention to the relevant flare models. The hard X-ray (HXR) images from HINOTORI showed mostly coronal emission at 20–25 keV suggesting that the HXR is emitted from multiple coronal loops, consistent with the non-thermal electron beam model in a high density corona. The thermal HXR model seems to be inconsistent with some observations. Three types of flares which have been classified from the Hinotori results are described, along with newly discovered hot thermal component of 30–40 million K which contributes thermal HXR emission. A summary is given for the characteristics of the energy release in an impulsive burst; and an empirical model is described, which explains simultaneous energy releases in multiple loops and successive movements of the release site as suggested from the HXR morphology. The discovery of large blue-shifted hot plasma from the soft X-ray line spectrum leads to some quantitative arguments for the evaporating flare model. An electron-heated flare atmosphere appears to explain various observations consistently.Invited paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

13.
Giannina Poletto 《Solar physics》1989,121(1-2):313-322
According to one of the most popular classifications, solar flares may be assigned either to the category of small short-lived events, or to the category of large, long-duration two-ribbon (2-R) flares. Even if such abroad division oversimplifies the flare phenomenon, our knowledge of the characteristics of stellar flares is so poor, that it is worthwhile to investigate the possibility of adopting this classification scheme for stellar flares as well. In particular we will analyze Einstein observations of a long duration flare on EQ Peg to establish whether it might be considered as a stellar analogy of 2-R solar events. To this end we apply to EQ Peg data a reconnection model, developed originally for solar 2-R flares, and conclude that stellar observations are consistent with model predictions, although additional information is required to identify uniquely the physical parameters of the flare region. Application of the model to integrated observations of a 2-R solar flare, for which high spatial resolution data are also available, shows, however, that future integrated observations may allow us to solve the ambiguities of the model and use it as a diagnostic tool for a better understanding of stellar flares.  相似文献   

14.
Loukas Vlahos 《Solar physics》1989,121(1-2):431-447
Particle acceleration during solar flares is a complex process where the main actors (Direct (D.C.) or turbulent electric fields) are hidden from us. It is easy to construct a successful particle accelertion model if we are allowed to impose on the flaring region arbitrary conditions (e.g., strength and scale length of the D.C. or turbulent electric fields), but then we have not solved the acceleration problem; we have simply re-defined it. We outline in this review three recent observations which indicate that the following physical processes may happen during solar flares: (1) Release of energy in a large number of microflares; (2) short time-scales; (3) small length scales; and (4) coherent radiation and acceleration sources. We propose that these new findings force us to reformulate the acceleration process inside a flaring active region assuming that a large number of reconnection sites will burst almost simultaneously. All the well-known acceleration mechanisms (electric fields, turbulent fields, shock waves, etc.) reviewed briefly here, can be used in a statistical model where each particle is gaining energy through its interaction with many small reconnection sites.  相似文献   

15.
R. P. Lin 《Solar physics》1982,113(1-2):217-220
We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting 3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to 100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically 102 kV compared to 10 kV for auroral substorms.  相似文献   

16.
We examine observational evidence concerning energy release in solar flares. We propose that different processes may be operative on four different time scales: (a) on the sub-second time scale of sub-bursts which are a prominent feature of mm-wave microwave records; (b) on the few-seconds time scale of elementary bursts which are a prominent feature of hard X-ray records; (c) on the few-minutes time scale of the impulsive phase; and (d) on the tens-of-minutes or longer time scale of the gradual phase.We propose that the concentration of magnetic field into magnetic knots at the photosphere has important consequences for the coronal magnetic-field structure such that the magnetic field in this region may be viewed as an array of elementary flux tubes. The release of the free energy of one such tube may produce an elementary burst. The development of magnetic islands during this process may be responsible for the sub-bursts. The impulsive phase may be simply the composite effect of many elementary bursts.We propose that the gradual phase of energy release, with which flares typically begin and with which many flares end, involves a steady process of reconnection, whereas the impulsive phase involves a more rapid stochastic process of reconnection which is a consequence of mode interaction.In the case of two-ribbon flares, the late part of the gradual phase may be attributed to reconnection of a large current sheet which is being produced as a result of filament eruption. A similar process may be operative in smaller flares.Also, Department of Applied Physics, Stanford University.  相似文献   

17.
Lin  R. P. 《Solar physics》1987,113(1-2):217-220

We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (≲1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting ∼3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to ≳100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically ∼102 kV compared to ∼10 kV for auroral substorms.

  相似文献   

18.
B. V. Somov 《Solar physics》1978,60(2):315-321
Radiative cooling and heat conduction determine the temperature structure of flare plasmas along magnetic field. It is shown that both in the case of slow heating and of impulsive heating, temperatures are distributed in such a way that classical collisional heat conduction is valid.  相似文献   

19.
We summarize key problems in our understanding of energy release in solar flares, as addressed by participants in a recent workshop. These problems fall into three broad areas: (i) Transport and thermalization of energy, (ii) acceleration of particles, and (iii) origin and effects of mass motions. We then describe how suitably coordinated collaborative observing sequences during the forthcoming Solar Maximum Year are potentially capable of resolving some of these issues.  相似文献   

20.
Observations of interplanetary relativistic electrons from several solar-flare events monitored through 1964 to mid-1967 are presented. These are the first direct spectral measurements and time histories, made outside the magnetosphere, of solar-flare electrons having relativistic velocities. The 3- to 12-MeV electrons detected have kinetic energies about two orders of magnitude higher than those solar electrons previously studied in space, and measurements of both the time histories and energy spectra for a number of events in the present solar cycle were carried out. These measurements of interplanetary electrons are also directly compared with solar X-ray data and with measurements of related interplanetary solar protons.The time histories of at least four electron events show fits to the typical diffusion picture. A demonstrated similarity between the electron and the medium-energy proton fits for the event of 7 July, in particular, indicates that at these electron energies, but over several orders of magnitude of rigidity, whatever diffusion does take place is very nearly on a velocity, rather than a rigidity or an energy, basis. Diffusion-fit time histories varied as a function of T 0 also indicate that the electrons in certain flare events originate at times near the X-ray and microwave burst, establishing their likely identity as the same electrons which cause the impulsive radiations. Also, the energy spectra and total numbers of the interplanetary electrons, compared with those of the flare-site electrons calculated from X-ray and microwave measurements, indicate that probably a small fraction of flare electrons escape into interplanetary space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号