首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
以十八烷基胺修饰氧化石墨烯(GO–ODA)为纳米填料,通过溶液铸膜法制备了聚乳酸(PLA)/GO–ODA纳米复合薄膜。用傅立叶变换红外光谱和扫描电子显微镜对GO–ODA及纳米复合薄膜的化学结构及形貌进行了表征,并对纳米复合薄膜的拉伸性能、热稳定性和透氧率进行了测试。结果表明,GO–ODA与PLA具有良好的相容性,可均匀分散于PLA基体中,对PLA膜起到增韧增强的效果,同时GO–ODA的加入使PLA的热稳定性和氧气阻隔性均有所提高。  相似文献   

2.
以γ-氨丙基三乙氧基硅烷(KH550)为改性剂对纤维素纳米纤维(CNF)进行功能化改性,并用聚丙二醇(PPG)对改性后的CNF进行包覆,制备了CNF-PPG纳米粒子。将其作为填料加到聚乳酸(PLA)/聚己二酸/对苯二甲酸丁二醇酯(PBAT)聚合物基体中,用溶液浇铸法制备了PLA/PBAT/CNF-PPG复合薄膜。通过FTIR、XPS、SEM、DSC、TG对薄膜进行了表征,探讨了PLA与PBAT的质量比及CNF-PPG纳米粒子的添加量对复合薄膜机械强度、热稳定性、阻隔性能的影响。结果表明,PLA/PBAT薄膜比纯PLA薄膜具有更高的韧性和热稳定性;当m(PLA)∶m(PBAT)=90∶10、CNF-PPG纳米粒子用量(以PLA和PBAT的质量为基准,下同)为10%时,PLA/PBAT/CNF-PPG(90/10/10)复合薄膜的拉伸强度达到(33.38±0.64) MPa,断裂伸长率为39.97%±0.67%;复合薄膜最终降解温度从纯PLA膜的394℃提高到435℃;复合薄膜的水蒸气和氧气透过系数分别为4.98×10–14 g·cm/(cm2·...  相似文献   

3.
采用动态灌注法制备氧化还原石墨烯(RGO)/聚乙二醇(PEG)复配成核剂,再利用双螺杆挤出机熔融共混制备一系列RGO/PEG改性PLA复合材料;并在模拟湿热环境下进行老化实验,再利用SEM、WAXD、DSC、POM和万能试验机对老化前后试样的断面形貌、结晶及力学性能进行测试分析。结果表明,RGO/PEG含量在0. 5%时,PLA基复合材料的断面更为粗糙,裂纹深度增加;经老化处理后,PLA基复合材料的界面呈现出模糊的交联结构。老化前,RGO/PEG含量在0. 5%时,PLA基复合材料的结晶度(X_c)达到最大值29. 4%,比纯PLA提高了18. 89%;其拉伸强度达到59. 45 MPa,比纯PLA的增加了6. 88%。与未老化的相比,老化处理后的PLA基复合材料的Xc均有所提高;而RGO/PEG含量为0. 5%的PLA基复合材料经老化处理后拉伸强度为59. 98 MPa,比老化后的纯PLA提高了1. 9%。  相似文献   

4.
利用还原氧化石墨烯(RGO)改善离子液体溶剂纤维素(CE)的综合性能,将氧化石墨烯(GO)分散在去离子水中,通过热还原法得到RGO,RGO与离子液体(IL)混合后采用减压蒸馏法去除水分,得到均匀分散的RGO/IL溶液,以RGO/IL溶液为纤维素溶剂,利用RGO改善CE薄膜的各项性能,用扫描电子显微镜和XRD表征了材料的形貌和结构。结果表明,RGO质量分数为1%时,RGO/CE复合薄膜的拉伸强度和模量分别为122MPa和6.77GPa,较纯CE薄膜分别提高了188%和320%。RGO/CE复合薄膜的电导率为4.7×10~(–6)S/m,较纯CE薄膜(2.5×10~(–14) S/m)提高了9个数量级,由于RGO与CE分子链间新的氢键的形成以及RGO优异的二维结构,RGO可以显著提高复合薄膜的热稳定性、力学性能和导电能力。  相似文献   

5.
利用超声波的分散、粉碎、活化、引发等多重作用以及吡咯单体与石墨烯的π-π相互作用,在实现石墨烯均匀分散的同时,使吡咯单体在石墨烯表面进行原位聚合反应,制备出聚吡咯/石墨烯(PPy/RGO)纳米复合材料。运用扫描电子显微镜(SEM)、红外光谱(FTIR)、X射线光电子能谱(XPS)等测试手段对PPy/RGO纳米复合材料的表面特性、化学组成及结构等进行了表征。在此基础上,研究了制备过程中的各种因素(如氧化剂、反应温度、石墨烯含量等)对PPy/RGO纳米复合材料产率及导电性能的影响。并采用热重分析(TGA)和导电测试分析了石墨烯含量对其热稳定性及电导率的影响。  相似文献   

6.
采用超声辅助Hummers法制备了氧化石墨烯(GO),采用机械共混法,辅以化学还原法制备了聚乙烯醇(PVA)/石墨烯(RGO)复合材料,对有关产物进行了表征和测试。结果表明:适量引入RGO可有效改善PVA的力学性能、热稳定性和导电性能,当RGO质量分数为1.5%时,PVA/RGO抗拉伸强度达45.2 MPa,比PVA提高了27%,电导率比PVA提高了6个数量级;当RGO质量分数为2.0%时,PVA/RGO玻璃化温度达到85.6℃,比PVA提高了8.0℃。  相似文献   

7.
采用简单的溶液共混、真空辅助抽滤和氢碘酸还原的方法,制备了柔性的芳纶纳米纤维/还原氧化石墨烯(ANFs/RGO)复合薄膜.利用四探针技术对复合薄膜的电导率进行测试表征;利用万能拉伸试验机对其力学性能进行了研究.结果表明,随着ANFs含量的增加,复合薄膜的电导率逐渐下降.当ANFs质量分数为25%时,复合薄膜的力学性能达...  相似文献   

8.
采用热还原的方法由氧化石墨烯(GO)制备得到还原石墨烯(RGO),并将两种石墨烯与热塑性聚氨酯(TPU)复合制得纳米复合材料薄膜。进而考察了两种纳米复合材料薄膜的导电、导热及力学性能。结果表明:在TPU中加入GO能够得到高导热、低导电的纳米复合材料,而加入RGO则得到高导热、高导电的纳米复合材料;同时,GO和RGO的加入,均能显著提高TPU的拉伸强度和模量。  相似文献   

9.
以环氧氯丙烷和1–甲基咪唑为原料制备新型离子液体(IL),以IL为原料对氧化石墨烯(GO)进行表面修饰制备离子液体功能化氧化石墨烯(IL–GO),以IL–GO为添加剂制备基于含氟聚苯并咪唑(FPBI)复合膜。研究了IL–GO的含量对复合膜的热稳定性、力学强度、离子电导率、离子交换容量(IEC)、吸水率、溶胀度和耐碱性等性能的影响。研究结果表明,复合膜的IEC、离子电导率和拉伸性能都随着IL–GO含量的增加而增大,当IL–GO含量为30%时其拉伸应力和拉伸弹性模量分别达到77.5 MPa和1.95 GPa,在80℃下,其最大离子电导率可达72.3 m S/cm,然而复合膜的热稳定性并没随着IL–GO含量的增加而改变。FPBI/IL–GO复合膜具有良好的稳定性,该系列阴离子交换膜有望在碱性阴离子交换膜燃料电池中得到应用。  相似文献   

10.
以国产聚乳酸(PLA)和进口PLA为原料,研究其成膜加工性能以及静态拉伸工艺对薄膜性能的影响,并研究了扩链剂苯乙烯-丙烯酸甘油酯共聚物(ADR)、聚碳酸丁二酯(PBC)以及防粘连剂对PLA成膜性和力学性能的影响。结果表明:在拉伸速度为60 mm/s时,易得到综合性能较好的薄膜;w(ADR)为0.2%时,可有效改善PLA薄膜的厚薄均匀性,并可提高薄膜的纵、横向拉伸强度;w(PBC)为10%时,可明显改善其成膜性,膜的厚薄均匀性及脆性;防粘连剂的加入对成膜性及薄膜性能影响不大。  相似文献   

11.
Poly(lactic) acid (PLA) was reinforced with acetylated TEMPO‐oxidized fibrillated cellulose (TOFC) prepared from birch pulp. Composite films were studied using dynamic mechanical thermal analysis, differential scanning calorimetry (DSC), as well as static mechanical testing. The storage modulus as well as tensile strength of PLA was improved on the addition of 30 wt% of TOFC by approximately 50% and 40%, respectively. Thermal stability as well as strength properties in moist environments (up to 90% relative humidity) was significantly improved at 15, 20, 25, and 30 wt% of TOFC. DSC showed that crystallization from solution took place during preparation of the composite films and was much greater than melt crystallization. POLYM. COMPOS., 2012. © 2013 Society of Plastics Engineers  相似文献   

12.
采用微纳层叠共挤出设备制备聚乳酸(PLA)/聚己内酯(PCL)可降解微层薄膜,利用扫描电子显微镜、万能材料试验仪、差示扫描量热仪和热失重分析仪等对微层薄膜的微观结构、力学性能和热稳定性进行表征。结果表明,PLA/PCL微层薄膜的热稳定性和力学性能均优于PLA/PCL共混薄膜;PCL对微层薄膜具有明显的增韧效果,同时可提高微层薄膜的结晶性能和热稳定性;当PLA/PCL配比为40/60、50/50或60/40时,PLA/PCL微层薄膜具有良好的综合性能,此时拉伸强度高于51.2 MPa,断裂伸长率高于568.6 %,冲击强度高于100.7 J/m,微层薄膜中PLA相的结晶度高于43.28 %、热降解峰值温度高于373.22 ℃。  相似文献   

13.
The effect of dicumyl peroxide (DCP) as a free-radical cross-linking agent on the morphology, thermal and mechanical properties, and gas permeation of blown films prepared by reactive blending of poly(lactic acid) (PLA) and natural rubber latex was investigated. In comparison to the blown films without DCP, SEM micrographs revealed that the amount of debonded rubber domains from the cryofractured surface reduced considerably. This was when DCP at 0.003 phr was incorporated and the free radicals from thermally decomposed DCP reacted with PLA and NR chains, generating PLA–NR copolymers and cross-linked NR as confirmed by FTIR spectra. These PLA–NR copolymers acted as compatibilizers, which increased the strength at the PLA/NR interfaces, leading to the improvement in tensile strength, elongation at break, tensile toughness, impact strength, and tear strength. Although DCP did not influence the cold crystallization of PLA, TGA thermograms showed that thermal stability slightly increased owing to the enhanced interfacial adhesion. However, the addition of DCP at 0.005 and 0.010 phr resulted in a high content of cross-linked NR gel, by consuming the free radicals instead in copolymer formation. Therefore, the compatibilization efficiency was significantly reduced and the mechanical properties of reactive PLA/NR blown films finally dropped. Also, this poor interfacial adhesion facilitated the microvoid formation at the polymer–rubber interface as a result of mechanical stretching upon the film blowing process, increasing the permeation of water vapor and oxygen molecules. According to our study, it can be summarized that to optimize the morphology, mechanical properties, and gas permeation property of the free radical-assisted reactive blends, it is of great concern to carefully balance reactive compatibilizer formation and gel formation by adjusting the DCP content.  相似文献   

14.
Poly(Lactic acid) (PLA)‐layered silicate nanocomposite films were prepared by solvent casting method. The films were irradiated with Co60 radiation facility at dose of 30 kGy. The effect of γ irradiation on mechanical properties of the neat PLA and nanocomposites was evaluated by data obtained from tensile testing measurements. The tensile strength of the irradiated PLA films increased with addition of 1 wt % triallyl cyanurate indicating crosslink formation. Significant ductile behavior was observed in the PLA nanocomposites containing 4 pph of nanoclay. Incorporation of nanoclay particles in the PLA matrix stimulated crystal growth as it was studied by differential scanning calorimetry. The morphology of the nanocomposites characterized by transmission electron microscopy and X‐ray diffraction revealed an exfoliated morphology in the PLA nanocomposite films containing 4 pph of nanoclay. Only very small changes were observed in the chemical structure of the irradiated samples as it was investigated by Fourier transform infrared spectroscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Antibacterial nanocomposite films of poly(butylene adipate-co-terephthalate) (PBAT) incorporated with different weight percentage of octakis(3-chloropropyl)octasilsesquioxane (chloropropyl functionalized POSS [Cl-fn-POSS]) nanofiller were prepared. The mechanical, thermal, morphological, barrier, and antimicrobial properties were examined. The mechanical properties of the nanocomposite films were enhanced by the addition of Cl-fn-POSS nanofiller. An optimum filler loading of 3 wt% is identified to be best suited for maximum enhancement in tensile strength (24 MPa for 3 wt% filled PBAT vs 11 MPa for neat PBAT) while a 1 wt% filler loading was adequate to double the tensile strength. The barrier properties (WVTR and oxygen transmission rate) of PBAT was improved by the presence of Cl-fn-POSS. A volume of 3 wt% filler loading results in 50% reduction of water permeation and 10% reduction in oxygen transmission. The thermogravimetric analyses of the nanocomposites indicated that the filler enabled the enhancement of thermal stability of PBAT. The nanocomposite films revealed antimicrobial activity with this activity increasing with increasing filler content. PBAT is compostable under suitable conditions and with a low weight percentage of filler that is largely made of silicon dioxide these nanocomposite films can find application as biodegradable food packaging material given their flexibility.  相似文献   

16.
Poly(lactic acid) (PLA)/alkalized halloysite nanotube (HNTa) nanocomposites were prepared by melt mixing. The morphology, crystallization behavior, mechanical properties, and thermal stability of the nanocomposites were investigated in comparison with those of the pristine PLA. HNTa can nucleate PLA, leading to a lower recrystallization temperature and higher crystallinity. Infrared spectra revealed that the hydroxyl groups of the PLA interacted with the external hydroxyl groups of HNTa nanofillers via hydrogen bonding. The thermal stability of the nanocomposites was improved with the addition of HNTa. The PLA/HNTa nanocomposites exhibited higher modulus and tensile strength than those of the PLA composites containing unmodified halloysite nanotubes (HNTs). The improvement in properties was probably due to a better dispersion of the HNTa in the PLA matrix compared to that of the unmodified HNTs. Therefore, the facile alkali treatment of HNTs offers a low cost nanofiller for the preparation of PLA based nanocomposites with high tensile modulus and tensile strength. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44272.  相似文献   

17.
The objectives of the presented work were to investigate films based on polylactic acid (PLA) and polyethylene glycol (PEG) in order to improve ductility and weldability of PLA films. The effect of plasticizer amount on the thermal, rheological, and mechanical properties of PLA plasticized films was investigated. The PEG content does affect the glass transition and the cold crystallization temperature of PLA in blends, while the melting temperature was not affected by the addition of PEG. The complex viscosity of the neat PLA granules and of plasticized films showed strong temperature and angular velocity dependence. The Young's modulus and tensile strength of plasticized films were improved with increasing plasticizer concentration, while the elongation at break stays rather constant. Plasticized PLA films were furthermore heat welded. These investigations showed that plasticized PLA films can be welded by heat welding. The obtained weld strength is strongly depending on the PEG amount as well as on selected welding parameters. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40394.  相似文献   

18.
This work addresses the effect of organomodified layer double hydroxide (OLDH) on the properties of PP/LDH nanocomposites prepared by melt intercalation method using a single screw extruder with maleic anhydride grafted polypropylene (PP-g-MA) as a compatibilizer. For this, Ni-Al LDH was first prepared by the co-precipitation method at constant pH using their nitrate salts. The above synthesized pristine LDH was organically modified using sodium dodecyl sulphate (SDS) by the regeneration method. The structural and thermal properties of LDH and PP nanocomposites were performed by X-ray diffraction (XRD), FTIR spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The influence of LDH loading on the mechanical and thermal properties of the nanocomposite was also investigated. The XRD results confirmed the formation of exfoliated PP/LDH nanocomposites. PP/LDH nanocomposites exhibited enhanced thermal stability relative to the pure PP. When 10% weight loss was selected as a point of comparison, the decomposition temperature of PP/LDH (5 wt%) nanocomposite was 15.3°C higher than that of pure PP. The DSC result indicated an increase in crystallization and melting temperature of the PP/LDH nanocomposites compared to pure PP. Overall, the mechanical properties of the PP/LDH nanocomposites increased with an increase in the LDH content. The maximum improvement of tensile strength, Young's modulus, flexural strength, and flexural modulus for the PP/LDH nanocomposite was found to be 11, 22.5, 28, and 22%, respectively, over neat PP. For comparison purposes, a nanocomposite with 5 wt% modified bentonite (PP/B5) was also prepared under the same operating condition and there was no significant improvement in mechanical properties (tensile strength and modulus).  相似文献   

19.
Poly(lactic acid) (PLA) loaded with various levels of chitosan nanoparticles (CsNP) (0–5.0%) were prepared by twin‐screw extrusion. The nanocomposites were investigated based on their morphology, thermal, mechanical and dielectric properties. The SEM morphology showed that CsNP was dispersed uniformly in the PLA matrix. Thermal analysis through DSC revealed that the cold crystallization temperature of PLA in the case of nanocomposites slightly decreased with increasing content of CsNP; indicating a limit nucleating effect of CsNP. TGA analysis revealed that the incorporation CsNP slightly decreased the thermal stability of the PLA matrix. The mechanical analysis indicated that the incorporation of the CsNP in the PLA matrix improved the elongation and the impact strength, but decreased the tensile strength. The dielectric properties of these materials have been investigated for the α‐relaxation process as a function of the temperature and frequency. The α‐relaxation process was analyzed with Vogel–Fulcher–Tamman and Havriliak–Negami models and fitting parameters and their evolution were obtained. POLYM. ENG. SCI. 56:987–994, 2016. © 2016 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号