首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Electrochemically driven chemical transformations play the key role in controlling storage of energy in chemical bonds and subsequent conversion to power electric vehicles and consumer electronics. The promise of coupling anionic oxygen redox with cationic redox to achieve a substantial increase in capacities has inspired research in a wide range of electrode materials. A key challenge is that these studies have focused on polycrystalline materials, where it is hard to perform precise structural determinations, especially related to the location of light atoms. Here a different approach is utilized and a highly ordered single crystal, Na2?xIrO3 is harnessed, to explore the role of defects and structural transformations in layered transition metal oxide materials on redox‐activity, capacity, reversibility, and stability. Within a combined experimental and theoretical framework, it is demonstrated that 1) it is possible to cycle Na2?xIrO3, offering proof of principle for single‐crystal based batteries 2) structural phase transitions coincide with Ir 4+/Ir 5+ redox couple with no evident contribution from anionic redox 3) strong irreversibility and capacity fade observed during cycling correlates with the Na + migration resulting in progressive growth of an electrochemically inert O3‐type NaIrO3 phase.  相似文献   

2.
Lithium‐rich layered oxides are promising candidate cathode materials for the Li‐ion batteries with energy densities above 300 Wh kg?1. However, issues such as the voltage hysteresis and decay hinder their commercial applications. Due to the entanglement of the transition metal (TM) migration and the anionic redox upon lithium extraction at high potentials, it is difficult to recognize the origin of these issues in conventional Li‐rich layered oxides. Herein, Li2MoO3 is chosen since prototype material to uncover the reason for the voltage hysteresis as the TM migration and anionic redox can be eliminated below 3.6 V versus Li+/Li in this material. On the basis of comprehensive investigations by neutron powder diffraction, scanning transmission electron microscopy, synchrotron X‐ray absorption spectroscopy, and density functional theory calculations, it is clarified that the ordering–disordering transformation of the Mo3O13 clusters induced by the intralayer Mo migration is responsible for the voltage hysteresis in the first cycle; the hysteresis can take place even without the anionic redox or the interlayer Mo migration. A similar suggestion is drawn for its iso‐structured Li2RuO3 (C2/c). These findings are useful for understanding of the voltage hysteresis in other complicated Li‐rich layered oxides.  相似文献   

3.
Triggering oxygen‐related activity is demonstrated as a promising strategy to effectively boost energy density of layered cathodes for sodium‐ion batteries. However, irreversible lattice oxygen loss will induce detrimental structure distortion, resulting in voltage decay and cycle degradation. Herein, a layered structure P2‐type Na0.66Li0.22Ru0.78O2 cathode is designed, delivering reversible oxygen‐related and Ru‐based redox chemistry simultaneously. Benefiting from the combination of strong Ru 4d‐O 2p covalency and stable Li location within the transition metal layer, reversible anionic/cationic redox chemistry is achieved successfully, which is proved by systematic bulk/surface analysis by in/ex situ spectroscopy (operando Raman and hard X‐ray absorption spectroscopy, etc.). Moreover, the robust structure and reversible phase transition evolution revealed by operando X‐ray diffraction further establish a high degree reversible (de)intercalation processes (≈150 mAh g?1, reversible capacity) and long‐term cycling (average capacity drop of 0.018%, 500 cycles).  相似文献   

4.
Over the last decade, Na‐ion batteries have been extensively studied as low‐cost alternatives to Li‐ion batteries for large‐scale grid storage applications; however, the development of high‐energy positive electrodes remains a major challenge. Materials with a polyanionic framework, such as Na superionic conductor (NASICON)‐structured cathodes with formula NaxM2(PO4)3, have attracted considerable attention because of their stable 3D crystal structure and high operating potential. Herein, a novel NASICON‐type compound, Na4MnCr(PO4)3, is reported as a promising cathode material for Na‐ion batteries that deliver a high specific capacity of 130 mAh g?1 during discharge utilizing high‐voltage Mn2+/3+ (3.5 V), Mn3+/4+ (4.0 V), and Cr3+/4+ (4.35 V) transition metal redox. In addition, Na4MnCr(PO4)3 exhibits a high rate capability (97 mAh g?1 at 5 C) and excellent all‐temperature performance. In situ X‐ray diffraction and synchrotron X‐ray diffraction analyses reveal reversible structural evolution for both charge and discharge.  相似文献   

5.
Large‐scale electrochemical energy storage is a critical factor in the development of renewable energy sources to enable their intermittent power to become dispatchable. In this context, Na‐ion batteries are seen as promising alternatives to Li‐ion batteries, but their advancement requires the discovery of new materials, their electrochemical properties, and a better understanding of structure–property relationships that underpin the electrochemistry. This study presents a new class of Na+ insertion materials for Na‐ion batteries. By virtue of its moderately inductive polyanionic framework, the air and moisture stable selenite Na2Co2(SeO3)3 displays a highly suitable redox potential of ≈ 4 V versus Na/Na+ based on the Co2+/Co3+ couple, rendering it compatible with conventional liquid organic electrolytes. A microwave hydrothermal synthesis route is developed for the rapid synthesis of nanostructured Na2Co2(SeO3)3 and its conductive graphene oxide composite. The electrochemistry and structural evolution of Na2Co2(SeO3)3 determined on cycling the cathode in a Na battery was investigated by operando X‐ray diffraction, X‐ray photoelectron spectroscopy, and temperature dependent magnetic susceptibility measurements. These studies reveal good structural and electrochemical reversibility.  相似文献   

6.
Progress over the past decade in Li‐insertion compounds has led to a new class of Li‐rich layered oxide electrodes cumulating both cationic and anionic redox processes. Pertaining to this new class of materials are the Li/Na iridate phases, which present a rich crystal chemistry. This work reports on a new protonic iridate phase H3+xIrO4 having a layered structure obtained by room temperature acid‐leaching of Li3IrO4. This new phase shows reversible charge storage properties of 1.5 e? per Ir atom with high rate capabilities in both nonaqueous (vs Li+/Li) and aqueous (vs capacitive carbon) media. It is demonstrated that Li‐insertion in carbonate LiPF6‐based electrolyte occurs through a classical reduction process (Ir5+ ? Ir3+), which is accompanied by a well‐defined structural transition. In concentrated H2SO4 electrolyte, this work provides evidence that the overall capacity of 1.7 H+ per Ir results from two additive redox processes with the low potential one showing ohmic limitations. Altogether, the room temperature protonation approach, which can be generalized to various Li‐rich phases containing either 3d, 4d or 5d metals, offers great opportunities for the judicious design of attractive electrode materials.  相似文献   

7.
Recently, anionic‐redox‐based materials have shown promising electrochemical performance as cathode materials for sodium‐ion batteries. However, one of the limiting factors in the development of oxygen‐redox‐based electrodes is their low operating voltage. In this study, the operating voltage of oxygen‐redox‐based electrodes is raised by incorporating nickel into P2‐type Na2/3[Zn0.3Mn0.7]O2 in such a way that the zinc is partially substituted by nickel. As designed, the resulting P2‐type Na2/3[(Ni0.5Zn0.5)0.3Mn0.7]O2 electrode exhibits an average operating voltage of 3.5 V and retains 95% of its initial capacity after 200 cycles in the voltage range of 2.3–4.6 V at 0.1C (26 mA g?1). Operando X‐ray diffraction analysis reveals the reversible phase transition: P2 to OP4 phase on charge and recovery to the P2 phase on discharge. Moreover, ex situ X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies reveal that the capacity is generated by the combination of Ni2+/Ni4+ and O2?/O1? redox pairs, which is supported by first‐principles calculations. It is thought that this kind of high voltage redox species combined with oxygen redox could be an interesting approach to further increase energy density of cathode materials for not only sodium‐based rechargeable batteries, but other alkali‐ion battery systems.  相似文献   

8.
Na‐ion technology is increasingly studied as a low‐cost solution for grid storage applications. Many positive electrode materials have been reported, mainly among layered oxides and polyanionic compounds. The vanadium oxy/flurophosphate solid solution Na3V2(PO4)2F3‐y O2y (0 ≤ y ≤ 1), in particular, has proven the ability to deliver ≈500 Wh kg‐1, operating on the V3+/V4+ (y = 0) or V4+/V5+ redox couples (y = 1). This paper reports here on a significant increase in specific energy by enabling sodium insertion into Na3V2(PO4)2FO2 to reach Na4V2(PO4)2FO2 upon discharge. This occurs at ≈1.6 V and increases the theoretical specific energy to 600 Wh kg?1, rivaling that of several Li‐ion battery cathodes. This improvement is achieved by the judicious modification of the composition either as O for F substitution, or Al for V substitution, both of which disrupt Na‐ion ordering and thereby enable insertion of the 4th Na. This paper furthermore shows from operando X‐Ray Diffraction (XRD) that this energy is obtained in the cycling range Na4V2(PO4)2FO2–NaV2(PO4)2FO2 with a very small overall volume change of 1.7%, which is one of the smallest volume changes for Na‐ion cathodes and which is a crucial requisite for stable long‐term cycling.  相似文献   

9.
Cathode materials with high energy density, long cycle life, and low cost are of top priority for energy storage systems. The Li‐rich transition metal (TM) oxides achieve high specific capacities by redox reactions of both the TM and oxygen ions. However, the poor reversible redox reaction of the anions results in severe fading of the cycling performance. Herein, the vacancy‐containing Na4/7[Mn6/7(?Mn)1/7]O2 (?Mn for vacancies in the Mn? O slab) is presented as a novel cathode material for Na‐ion batteries. The presence of native vacancies endows this material with attractive properties including high structural flexibility and stability upon Na‐ion extraction and insertion and high reversibility of oxygen redox reaction. Synchrotron X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies demonstrate that the charge compensation is dominated by the oxygen redox reaction and Mn3+/Mn4+ redox reaction separately. In situ synchrotron X‐ray diffraction exhibits its zero‐strain feature during the cycling. Density functional theory calculations further deepen the understanding of the charge compensation by oxygen and manganese redox reactions and the immobility of the Mn ions in the material. These findings provide new ideas on searching for and designing materials with high capacity and high structural stability for novel energy storage systems.  相似文献   

10.
Developing multielectron reaction electrode materials is essential for achieving high specific capacity and high energy density in secondary batteries; however, it remains a great challenge. Herein, Na3MnTi(PO4)3/C hollow microspheres with an open and stable NASICON framework are synthesized by a spray‐drying‐assisted process. When applied as a cathode material for sodium‐ion batteries, the resultant Na3MnTi(PO4)3/C microspheres demonstrate fully reversible three‐electron redox reactions, corresponding to the Ti3+/4+ (≈2.1 V), Mn2+/3+ (≈3.5 V), and Mn3+/4+ (≈4.0 V vs Na+/Na) redox couples. In situ X‐ray diffraction results reveals that both solid‐solution and two‐phase electrochemical reactions are involved in the sodiation/desodiation processes. The high specific capacity (160 mAh g?1 at 0.2 C), outstanding cyclability (≈92% capacity retention after 500 cycles at 2 C), and the facile synthesis make the Na3MnTi(PO4)3/C a prospective cathode material for sodium‐ion batteries.  相似文献   

11.
Sodium‐ion batteries are promising for grid‐scale storage applications due to the natural abundance and low cost of sodium. However, few electrodes that can meet the requirements for practical applications are available today due to the limited routes to exploring new materials. Here, a new strategy is proposed through partially/fully substituting the redox couple of existing negative electrodes in their reduced forms to design the corresponding new positive electrode materials. The power of this strategy is demonstrated through the successful design of new tunnel‐type positive electrode materials of Na0.61[Mn0.61‐xFexTi0.39]O2, composed of non‐toxic and abundant elements: Na, Mn, Fe, Ti. In particular, the designed air‐stable Na0.61[Mn0.27Fe0.34Ti0.39]O2 shows a usable capacity of ≈90 mAh g?1, registering the highest value among the tunnel‐type oxides, and a high storage voltage of 3.56 V, corresponding to the Fe3+/Fe4+ redox couple realized for the first time in non‐layered oxides, which was confirmed by X‐ray absorption spectroscopy and Mössbauer spectroscopy. This new strategy would open an exciting route to explore electrode materials for rechargeable batteries.  相似文献   

12.
The recent discovery of Li‐excess cation‐disordered rock salt cathodes has greatly enlarged the design space of Li‐ion cathode materials. Evidence of facile lattice fluorine substitution for oxygen has further provided an important strategy to enhance the cycling performance of this class of materials. Here, a group of Mn3+–Nb5+‐based cation‐disordered oxyfluorides, Li1.2Mn3+0.6+0.5xNb5+0.2?0.5xO2?xFx (x = 0, 0.05, 0.1, 0.15, 0.2) is investigated and it is found that fluorination improves capacity retention in a very significant way. Combining spectroscopic methods and ab initio calculations, it is demonstrated that the increased transition‐metal redox (Mn3+/Mn4+) capacity that can be accommodated upon fluorination reduces reliance on oxygen redox and leads to less oxygen loss, as evidenced by differential electrochemical mass spectroscopy measurements. Furthermore, it is found that fluorine substitution also decreases the Mn3+‐induced Jahn–Teller distortion, leading to an orbital rearrangement that further increases the contribution of Mn‐redox capacity to the overall capacity.  相似文献   

13.
The anionic redox activity in lithium‐rich layered oxides has the potential to boost the energy density of lithium‐ion batteries. Although it is widely accepted that the anionic redox activity stems from the orphaned oxygen energy level, its regulation and structural stabilization, which are essential for practical employment, remain still elusive, requiring an improved fundamental understanding. Herein, the oxygen redox activity for a wide range of 3d transition‐metal‐based Li2TMO3 compounds is investigated and the intrinsic competition between the cationic and anionic redox reaction is unveiled. It is demonstrated that the energy level of the orphaned oxygen state (and, correspondingly, the activity) is delicately governed by the type and number of neighboring transition metals owing to the π‐type interactions between Li? O? Li and M t2g states. Based on these findings, a simple model that can be used to estimate the anionic redox activity of various lithium‐rich layered oxides is proposed. The model explains the recently reported significantly different oxygen redox voltages or inactivity in lithium‐rich materials despite the commonly observed Li? O? Li states with presumably unhybridized character. The discovery of hidden factors that rule the anionic redox in lithium‐rich cathode materials will aid in enabling controlled cumulative cationic and anionic redox reactions.  相似文献   

14.
Mn‐based hexacyanoferrate NaxMnFe(CN)6 (NMHFC) has been attracting more attention as a promising cathode material for sodium ion storage owing to its low cost, environmental friendliness, and its high voltage plateau of 3.6 V, which comes from the Mn2+/Mn3+ redox couple. In particular, the Na‐rich NMHFC (x > 1.40) with trigonal phase is considered an attractive candidate due to its large capacity of ≈130 mAh g?1, delivering high energy density. Its unstable cycle life, however, is holding back its practical application due to the dissolution of Mn2+ and the trigonal‐cubic phase transition during the charge–discharge process. Here, a novel hexacyanoferrate (Na1.60Mn0.833Fe0.167[Fe(CN)6], NMFHFC‐1) with Na‐rich cubic structure and dual‐metal active redox couples is developed for the first time. Through multiple structural modulation, the stress distortion is minimized by restraining Mn2+ dissolution and the trigonal‐cubic phase transition, which are common issues in manganese‐based hexacyanoferrate. Moreover, NMFHFC‐1 simultaneously retains an abundance of Na ions in the framework. As a result, Na1.60Mn0.833Fe0.167[Fe(CN)6] electrode delivers high energy density (436 Wh kg?1) and excellent cycle life (80.2% capacity retention over 300 cycles), paving the way for the development of novel commercial cathode materials for sodium ion storage.  相似文献   

15.
Sodium‐ion batteries may become an alternative to the widespread lithium‐ion technology due to cost and kinetic advantages provided that cyclability is improved. For this purpose, the interplay between electrochemical and structural processes is key and is demonstrated in this work for Na2.46V6O16 (NVO) and Li2.55V6O16 employing operando synchrotron X‐ray diffraction. When NVO is cycled between 4.0 and 1.6 V, Na‐ions reversibly occupy two crystallographic sites, which results in remarkable cyclability. Upon discharge to 1.0 V, however, Na‐ions occupy also interstitial sites, inducing irreversible structural change with some loss of crystallinity concomitant with a decrease in capacity. Capacity fading increases with the ionic radius of the alkali ions (K+ > Na+ > Li+), suggesting that smaller ions stabilize the structure. This correlation of structural variation and electrochemical performance suggests a route toward improving cycling stability of a sodium‐ion battery. Its essence is a minor Li+‐retention in the A2+xV6O16 structure. Even though the majority of Li‐ions are replaced by the abundant Na+, the residual Li‐ions (≈10%) are sufficient to stabilize the layered structure, diminishing the irreversible structural damage. These results pave the way for further exploitation of the role of small ions in lattice stabilization that increases cycling performance.  相似文献   

16.
The difficulty in finding positive electrode materials for sodium‐ion (Na‐ion) batteries with a large specific energy has slowed down their commercialization. Layered transition metal (M) oxides NaxMO2 with a two‐layer oxygen stacking (P2, 0.6 ≤ x ≤ 0.75), are promising candidates. However, the high average metal oxidation state needed during synthesis means that P2 NaxMO2 cathodes often require the introduction of high‐valent cations (Mn4+, Ti4+, Sn5+, or Te6+), limiting the cathode's performance. Using a combination of first‐principles calculations and experiments, the feasibility of P2 cathodes containing only electrochemically active nickel and cobalt cations is investigated. It is found that P2 NaxNiyCo1–yO2 materials with x = 0.66, 0.75, and 0 ≤ y ≤ 0.33 are either thermodynamically stable or metastable yet close to the convex hull at typical P2 synthesis temperatures (≈1000 K). It is demonstrated that a novel P2 compound with y = 0.22 and both Ni3+/4+ and Co3+/4+ can be successfully synthesized. It is studied electrochemically and structurally, using in situ and ex situ X‐ray diffraction. It is demonstrated that the chemical space of P2 layered compounds is not fully explored yet and that ab initio phase diagrams allow the determination of new high‐specific energy positive electrodes to be targeted experimentally.  相似文献   

17.
The effects of different alkali and alkali-earth metal ions on the electronic structures and properties of sodalite Mn[AlSiO4]6 (M-SOD) and their hydrates Mn[AlSiO4]6?8H2O (M=Li, Na, K, n = 6; M=Ca, n = 3) were studied using density functional theory method. Theoretical calculations predicted that the Al–O–Si bond angle and cation-framework oxide distance in sodalites with alkali metal cations are correlated with cell volumes. The reduced bandwidths in M-SOD (M=Li, Na and K) show that the inter-atomic orbital overlap in sodalites is weaker than those in the hydrate phases. Frontier molecular orbital analysis indicated that oxygen atoms in the frameworks and most metal ions of SOD and their corresponding hydrates exhibit high reactivity. The interactions existing in sodalites and hydrates were qualitative described. The calculated combination energies of metal ions with framework of sodalites are in the order of K+< Na+< Li+< Ca2+. This finding confirms the experimental observation for ion exchange.  相似文献   

18.
Cobalt‐free layered lithium‐rich nickel manganese oxides, Li[LixNiyMn1?x?y]O2 (LLNMO), are promising positive electrode materials for lithium rechargeable batteries because of their high energy density and low materials cost. However, substantial voltage decay is inevitable upon electrochemical cycling, which makes this class of materials less practical. It has been proposed that undesirable voltage decay is linked to irreversible structural rearrangement involving irreversible oxygen loss and cation migration. Herein, the authors demonstrate that the voltage decay of the electrode is correlated to Mn4+/Mn3+ redox activation and subsequent cation disordering, which can be remarkably suppressed via simple compositional tuning to induce the formation of Ni3+ in the pristine material. By implementing our new strategy, the Mn4+/Mn3+ reduction is subdued by an alternative redox reaction involving the use of pristine Ni3+ as a redox buffer, which has been designed to be widened from Ni3+/Ni4+ to Ni2+/Ni4+, without compensation for the capacity in principle. Negligible change in the voltage profile of modified LLNMO is observed upon extended cycling, and manganese migration into the lithium layer is significantly suppressed. Based on these findings, we propose a general strategy to suppress the voltage decay of Mn‐containing lithium‐rich oxides to achieve long‐lasting high energy density from this class of materials.  相似文献   

19.
Sodium superionic conductor (NASICON) cathodes are attractive for Na‐ion battery applications as they exhibit both high structural stability and high sodium ion mobility. Herein, a comprehensive study is presented on the structural and electrochemical properties of the NASICON‐Na3+yV2?yMny(PO4)3 (0 ≤ y ≤ 1) series. A phase miscibility gap is observed at y = 0.5, defining two solid solution domains with low and high Mn contents. Although, members of each of these domains Na3.25V1.75Mn0.25(PO4)3 and Na3.75V1.25Mn0.75(PO4)3 reversibly exchange sodium ions with high structural integrity, the activity of the Mn3+/Mn2+ redox couple is found to be absent and present in the former and latter candidate, respectively. Galvanostatic cycling and rate studies reveal higher capacity and rate capability for the Na3.75V1.25Mn0.75(PO4)3 cathode (100 and 89 mA h g?1 at 1C and 5C rate, respectively) in the Na3+yV2?yMny(PO4)3 series. Such a remarkable performance is attributed to optimum bottleneck size (≈5 Å2) and modulated V‐ and Mn‐redox centers as deduced from Rietveld analysis and DFT calculations, respectively. This study shows how important it is to manipulate electronic and crystal structures to achieve high‐performance NASICON cathodes.  相似文献   

20.
Mixed-ligand ruthenium(II) complexes of three photoactive ligands, viz., (E)-1-[2-(4-methyl-2-pyridyl)-4-pyridyl]-2-(1-naphthyl)-1-ethene (mppne), (E)-1-(9-anthryl)-2-[2-(4-methyl-2-pyridyl)-4-pyridyl]-1-ethene (mppae) and (E)-1-[2-(4-methyl-2-pyridyl)-4-pyridyl]-2-(1-pyrenyl)-1-ethene (mpppe), in which a 2,2′-bipyridyl unit is linked via an ethylinic linkage to either a naphthalene, an anthracene or a pyrene chromophore and three electroactive ligands, viz., 4-(4-pyridyl)-1,2-benzenediol (catpy), 5,6-dihydroxy-1,10-phenanthroline (catphen) and 1,2-benzenediol (cat), were synthesized in good to moderate yields. Complexes [Ru(bpy)2(mppne)]2+ (bpy is 2, 2′–bipyridyl), [Ru(bpy)2(mppae)]2+, [Ru(bpy)2(mpppe)]2+, [Ru(bpy)2(sq-py)]+, [Ru(bpy)2(sq-phen)]+ and [Ru(phen)2(bsq)]+ (phen is 1,10-phenanthroline) were fully characterized by elemental analysis, IR, 1H NMR, fast-atom bombardment or electron-impact mass, UV–vis and cyclic voltammetric methods. In the latter three complexes, the ligands catpy, catphen and cat are actually bound to the metal center as the corresponding semiquinone species, viz., 4-(4-pyridyl)-1,2-benzenedioleto(+I) (sq-py), 1,10-phenanthroline-5,6-dioleto(+I) (sq-phen) and 1,2-benzenedioleto(+I) (bsq), thus making the overall charge of the complexes formally equal to + 1 in each case. These three complexes are electron paramagnetic resonance active and exhibit an intense absorption band between 941 and 958 nm owing to metal-to-ligand charge transfer (MLCT, d Ruπ*sq) transitions. The other three ruthenium(II) complexes containing three photoactive ligands, mppne, mppae and mpppe, exhibit MLCT (d Ruπ*bpy ) bands in the 454–461-nm region and are diamagnetic. These can be characterized by the 1H NMR method. [Ru(bpy)2(mppne)]2+, [Ru(bpy)2(mppae)]2+ and [Ru(bpy)2(mpppe)]2+ exhibit redox waves corresponding to the RuIII/RuII couple along with the expected ligand (bpy and substituted bpy) based ones in their cyclic and differential pulse voltammograms (CH3CN, 0.1 M tetrabutylammonium hexafluorophosphate)—corresponding voltammograms of [Ru(bpy)2(sq-py)]+, [Ru(bpy)2(sq-phen)]+ and [Ru(phen)2(bsq)]+ are mainly characterized by waves corresponding to the quinone/semiquinone (q/sq) and semiquinone/1,2-diol (sq/cat) redox processes. The results of absorption and fluorescence titration as well as thermal denaturation studies reveal that [Ru(bpy)2(mppne)]2+ and [Ru(bpy)2(mppae)]2+ are moderate-to-strong binders of calf thymus DNA with binding constants ranging from 105 to 106 M−1. Under the identical conditions of drug and light dose, the DNA (supercoiled pBR 322) photocleavage activities of these two complexes follow the order:[Ru(bpy)2(mppne)]2+>[Ru(bpy)2(mppae)]2+, although the emission quantum yields follow the reverse order. The other ruthenium(II) complexes containing the semiquinone-based ligands are found to be nonluminescent and inefficient photocleavage agents of DNA. However, experiments shows that [Ru(bpy)2(sq)]+-based complexes oxidize the sugar unit and could be used as mild oxidants for the sugar moiety of DNA. Possible explanations for these observations are presented.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号