首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Thermodynamical feasibility study and the growth of layer structured transition metal dichalcogenide single crystals of WSe2, using iodine as transporting agent, has been reported in this paper. The characterization of the grown samples have been done by X-ray analysis.  相似文献   

2.
    
Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost-effective and lightweight devices. However, the underlying carrier transport across the 2D homo- or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible-near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2) and black phosphorus (BP) is reported. The type-I and type-II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520–2000 nm. The built-in potential at the MoTe2/BP interface can efficiently separate photoexcited electron–hole pairs with a high responsivity of 290 mA W−1, an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias.  相似文献   

3.
4.
5.
Recent reports on highly efficient photoelectrochemical solar cells withn-type WSe2 have prompted us to grown-type single crystals of WSe2 using a chemical vapour transport method. Different transporting agents have been used. It is seen that SeCl4 transporter leads to very large single crystals ofp-type WSe2, whereas the same transporting agent with excess amount of Se leads ton-type single crystals. PEC solar cells fabricated withp-type andn-type crystals thus grown have been reported and the results discussed.  相似文献   

6.
7.
    
Fabrication and spintronics properties of 2D–0D heterostructures are reported. Devices based on graphene (“Gr”)–aluminium nanoclusters heterostructures show robust and reproducible single‐electron transport features, in addition to spin‐dependent functionality when using a top magnetic electrode. The magnetic orientation of this single ferromagnetic electrode enables the modulation of the environmental charge experienced by the aluminium nanoclusters. This anisotropic magneto‐Coulomb effect, originating from spin–orbit coupling within the ferromagnetic electrode, provides tunable spin valve‐like magnetoresistance signatures without the requirement of spin coherent charge tunneling. These results extend the capability of Gr to act both as electrode and as a platform for the growth of 2D–0D mixed‐dimensional van der Waals heterostructures, providing magnetic functionalities in the Coulomb blockade regime on scalable spintronic devices. These heterostructures pave the way towards novel device architectures at the crossroads of 2D material physics and spin electronics.  相似文献   

8.
9.
10.
    
Standard methods for calculating transport parameters in nanoscale field‐effect transistors (FETs), namely carrier concentration and mobility, require a linear connection between the gate voltage and channel conductance; however, this is often not the case. One reason often overlooked is that shifts in chemical and electric potential can partially compensate each other, commonly referred to as quantum capacitance. In nanoscale FETs, capacitance is often unmeasurable and an analytical formula is required, which assumes the conducting channel as metallic and common methods of determining threshold voltage no longer couple properly into transport equations. As present and future FET structures become smaller and have increased channel‐gate coupling, this issue will render standard methods impossible to use. This work discusses the validity of common methods of characterization for nanoscale FETs, develops a universal model to determine transport properties by only measuring the threshold voltage of an FET and presents a new parameter to easily classify FETs as either quantum capacitance‐limited or metallic approximated charge transport. Also considered in this work is electrical hysteresis from trap states and, in combination with the proposed universal model, novel techniques are introduced to measure and remove the errors associated with these effects often ignored in literature.  相似文献   

11.
    
2D transition metal dichalcogenide (TMD) layered materials are promising for future electronic and optoelectronic applications. The realization of large‐area electronics and circuits strongly relies on wafer‐scale, selective growth of quality 2D TMDs. Here, a scalable method, namely, metal‐guided selective growth (MGSG), is reported. The success of control over the transition‐metal‐precursor vapor pressure, the first concurrent growth of two dissimilar monolayer TMDs, is demonstrated in conjunction with lateral or vertical TMD heterojunctions at precisely desired locations over the entire wafer in a single chemical vapor deposition (VCD) process. Owing to the location selectivity, MGSG allows the growth of p‐ and n‐type TMDs with spatial homogeneity and uniform electrical performance for circuit applications. As a demonstration, the first bottom‐up complementary metal‐oxide‐semiconductor inverter based on p‐type WSe2 and n‐type MoSe2 is achieved, which exhibits a high and reproducible voltage gain of 23 with little dependence on position.  相似文献   

12.
The limit of the large Coulomb energy compare the cyclotron energy is considered. It is possible to relate the electron density with the analytical properties of one electron Green function and show that one electron gap exists at integer fillings of Landau level. The energy of collective excitations of plasmon type is calculated at small momenta. It is shown that the activation energy of Skyrmion-antiskyrmion pairs and the energy of spin waves is proportional to the cyclotron energy in this limit.  相似文献   

13.
    
Recently, piezoelectricity has been observed in 2D atomically thin materials, such as hexagonal‐boron nitride, graphene, and transition metal dichalcogenides (TMDs). Specifically, exfoliated monolayer MoS2 exhibits a high piezoelectricity that is comparable to that of traditional piezoelectric materials. However, monolayer TMD materials are not regarded as suitable for actual piezoelectric devices due to their insufficient mechanical durability for sustained operation while Bernal‐stacked bilayer TMD materials lose noncentrosymmetry and consequently piezoelectricity. Here, it is shown that WSe2 bilayers fabricated via turbostratic stacking have reliable piezoelectric properties that cannot be obtained from a mechanically exfoliated WSe2 bilayer with Bernal stacking. Turbostratic stacking refers to the transfer of each chemical vapor deposition (CVD)‐grown WSe2 monolayer to allow for an increase in degrees of freedom in the bilayer symmetry, leading to noncentrosymmetry in the bilayers. In contrast, CVD‐grown WSe2 bilayers exhibit very weak piezoelectricity because of the energetics and crystallographic orientation. The flexible piezoelectric WSe2 bilayers exhibit a prominent mechanical durability of up to 0.95% of strain as well as reliable energy harvesting performance, which is adequate to drive a small liquid crystal display without external energy sources, in contrast to monolayer WSe2 for which the device performance becomes degraded above a strain of 0.63%.  相似文献   

14.
    
p–n junctions play an important role in modern semiconductor electronics and optoelectronics, and field‐effect transistors are often used for logic circuits. Here, gate‐controlled logic rectifiers and logic optoelectronic devices based on stacked black phosphorus (BP) and tungsten diselenide (WSe2) heterojunctions are reported. The gate‐tunable ambipolar charge carriers in BP and WSe2 enable a flexible, dynamic, and wide modulation on the heterojunctions as isotype (p–p and n–n) and anisotype (p–n) diodes, which exhibit disparate rectifying and photovoltaic properties. Based on such characteristics, it is demonstrated that BP–WSe2 heterojunction diodes can be developed for high‐performance logic rectifiers and logic optoelectronic devices. Logic optoelectronic devices can convert a light signal to an electric one by applied gate voltages. This work should be helpful to expand the applications of 2D crystals.  相似文献   

15.
    
Vertical integration of 2D layered materials to form van der Waals heterostructures (vdWHs) offers new functional electronic and optoelectronic devices. However, the mobility in vertical carrier transport in vdWHs of vertical field‐effect transistor (VFET) is not yet investigated in spite of the importance of mobility for the successful application of VFETs in integrated circuits. Here, the mobility in VFET of vdWHs under different drain biases, gate biases, and metal work functions is first investigated and engineered. The traps in WSe2 are the main source of scattering, which influences the vertical mobility and three distinct transport mechanisms: Ohmic transport, trap‐limited transport, and space‐charge‐limited transport. The vertical mobility in VFET can be improved by suppressing the trap states by raising the Fermi level of WSe2. This is achieved by increasing the injected carrier density by applying a high drain voltage, or decreasing the Schottky barrier at the graphene/WSe2 and metal/WSe2 junctions by applying a gate bias and reducing the metal work function, respectively. Consequently, the mobility in Mn vdWH at +50 V gate voltage is about 76 times higher than the initial mobility of Au vdWH. This work enables further improvements in the VFET for successful application in integrated circuits.  相似文献   

16.
    
Ambipolar transport characteristics of thin film transistors fabricated from nontoxic white light emitting quantum dot complexes (QDCs) are herein reported to exhibit efficient carrier mobilities. The QDCs are synthesized by forming bluish green emitting zinc quinolate complex on the surface of orange emitting Mn2+‐doped ZnS quantum dots (Qdots) using 8‐hydroxyquinoline 5‐sulfonic acid as the chelating ligand. The device exhibits efficient ambipolar transport characteristics with high ION/IOFF ratio of 104 and electron mobility and hole mobility of 2.95 × 10−02 and 1.06 × 10−02 cm2 V−1 s−1, respectively. The subthreshold slope of Qdot complex–integrated thin film transistor increases from that of Mn2+‐doped ZnS Qdot–integrated thin film transistor from 0.35 to 0.79 V dec−1 in p‐field effect transistor (FET) and from 0.59 to 0.97 V dec−1 in n‐FET operations, which annotates an increase in trap state density due to surface complexation of the Qdot. These results suggest that white light emitting QDC can be used as an efficient transport as well as an emissive material, which open up new paradigm for advanced optoelectronic applications.  相似文献   

17.
Three-dimensional (3D) topological insulators (TIs) have generated tremendous research interest over the past decade due to their topologically-protected surface states with linear dispersion and helical spin texture. The topological surface states offer an important platform to realize topological phase transitions, topological magnetoelectric effects and topological superconductivity via 3D TI-based heterostructures. In this review, we summarize the key findings of magneto and quantum transport properties in 3D TIs and their related heterostructures with normal insulators, ferromagnets and superconductors. For intrinsic 3D TIs, the experimental evidences of the topological surface states and their coupling effects are reviewed. Whereas for 3D TI related heterostructures, we focus on some important phenomenological magnetotransport activities and provide explanations for the proximity-induced topological and quantum effects.  相似文献   

18.
Many theoretical studies and some experiments have shown the possibility of several new secondary quantum effects in small Josephson junctions at low temperatures. We show that, within the well-established quantum picture of the junction, it is possible to experimentally observe sharp voltalge peaks at certain current values. Such peaks are related to a resonant macroscopic quantum tunneling between levels in neighboring wells of the proper washboard potential having close energies. The proposed experiment, with respect to experiments on Coulomb blockade or Block oscillations, requires a larger junction area, reducing the technological difficulties in making the samples.  相似文献   

19.
    
Ultraviolet photodetectors (UPDs) based on low-dimensional halide perovskites have undergone rapid development. Here, regulation of the electronic configuration of low-dimensional hybrid perovskites are reported via organic cations for self-powered UPDs. For the first time, it is determine that the rational design of organic cation phenyl alkylammonium can effectively prevent phonon scattering thus increasing charge carrier extraction in low dimensional lead chlorine perovskite thin-films. As a result, the exciton-binding energy can be reduced to 62.91 meV in (PMA)2PbCl4 perovskite films with a charge-carrier mobility of 0.335 cm2 V−1 s−1. The fabricated (PMA)2PbCl4-based self-powered UPDs has achieved a high detectivity of 6.32 × 1013 jones with a low noise current of 0.35 pA Hz−1/2 under zero bias. A further demonstration of images with high UV to visible light rejection ratio under weak-light illumination of 70 nW cm−2 highlights the feasible potential application of low-dimensional perovskite.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号