首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2D semiconductors have shown great potential for application to electrically tunable optoelectronics. Despite the strong excitonic photoluminescence (PL) of monolayer transition metal dichalcogenides (TMDs), their efficient electroluminescence (EL) has not been achieved due to the low efficiency of charge injection and electron–hole recombination. Here, multioperation-mode light-emitting field-effect transistors (LEFETs) consisting of a monolayer WSe2 channel and graphene contacts coupled with two top gates for selective and balanced injection of charge carriers are demonstrated. Visibly observable EL is achieved with the high external quantum efficiency of ≈6% at room temperature due to efficient recombination of injected electrons and holes in a confined 2D channel. Further, electrical tunability of both the channel and contacts enables multioperation modes, such as antiambipolar, depletion,and unipolar regions, which can be utilized for polarity-tunable field-effect transistors and photodetectors. The work exhibits great potential for use in 2D semiconductor LEFETs for novel optoelectronics capable of high efficiency, multifunctions, and heterointegration.  相似文献   

2.
We present the fabrication of carbon-coated tungsten diselenide (WSe2@C) nanorods by a facile one-pot high temperature solid-state reaction in a sealed reactor, using commercially available W and Se powders as precursors as well as maleic anhydride-grafted ethylene-octene copolymer (POE-g-MA) as a carbon source. Microscopic studies including SEM, TEM and HR-TEM confirmed that WSe2 nanorods with an average diameter of 20 nm were encapsulated by carbon layers. As-prepared WSe2@C nanorods were further investigated by XRD and Raman spectra. Thermal analysis of the sealed W-Se-POE-g-MA system was performed in order to understand the chemical reaction of W and Se at high temperature in the presence of POE-g-MA. The formation mechanism of carbon-encapsulated WSe2 nanostructures was then proposed.  相似文献   

3.
The exploration of moiré superlatticesholds promising potential to uncover novel quantum phenomena emerging from the interplay of atomic structure and electronic correlation . However, the impact of the moiré potential modulation on the number of twisted layers has yet to be experimentally explored. Here, this work synthesizes a twisted WSe2 homotrilayer using a dry-transfer method and investigates the enhancement of the moiré potential with increasing number of twisted layers. The results of the study reveal the presence of multiple exciton resonances with positive or negative circularly polarized emission in the WSe2 homostructure with small twist angles, which are attributed to the excitonic ground and excited states confined to the moiré potential. The distinct g-factor observed in the magneto-optical spectroscopy is also shown to be a result of the confinement of the exciton in the moiré potential. The moiré potential depths of the twisted bilayer and trilayer homostructures are found to be 111 and 212 meV, respectively, an increase of 91% from the bilayer structure. These findings demonstrate that the depth of the moiré potential can be manipulated by adjusting the number of stacked layers, providing a promising avenue for exploration into highly correlated quantum phenomena.  相似文献   

4.
The outstanding optoelectronic and valleytronic properties of transition metal dichalcogenides (TMDs) have triggered intense research efforts by the scientific community. An alternative to induce long-range ferromagnetism (FM) in TMDs is by introducing magnetic dopants to form a dilute magnetic semiconductor. Enhancing ferromagnetism in these semiconductors not only represents a key step toward modern TMD-based spintronics, but also enables exploration of new and exciting dimensionality-driven magnetic phenomena. To this end, tunable ferromagnetism at room temperature and a thermally induced spin flip (TISF) in monolayers of V-doped WSe2 are shown. As vanadium concentration increases, the saturation magnetization increases, which is optimal at ≈4 at% vanadium; the highest doping level ever achieved for V-doped WSe2 monolayers. The TISF occurs at ≈175 K and becomes more pronounced upon increasing the temperature toward room temperature. The TISF can be manipulated by changing the vanadium concentration. The TISF is attributed to the magnetic-field- and temperature-dependent flipping of the nearest W-site magnetic moments that are antiferromagnetically coupled to the V magnetic moments in the ground state. This is fully supported by a recent spin-polarized density functional theory study. The findings pave the way for the development of novel spintronic and valleytronic nanodevices and stimulate further research.  相似文献   

5.
Transition metal dichalcogenide (TMD)-based 2D monolayer semiconductors, with the direct bandgap and the large exciton binding energy, are widely studied to develop miniaturized optoelectronic devices, e.g., nanoscale light-emitting diodes (LEDs). However, in terms of polarization control, it is still quite challenging to realize polarized electroluminescence (EL) from TMD monolayers, especially at room temperature. Here, by using Ag nanowire top electrode, polarized LEDs are demonstrated based on 2D monolayer semiconductors (WSe2, MoSe2, and WS2) at room temperature with a degree of polarization (DoP) ranging from 50% to 63%. The highly anisotropic EL emission comes from the 2D/Ag interface via the electron/hole injection and recombination process, where the EL emission is also enhanced by the polarization-dependent plasmonic resonance of the Ag nanowire. These findings introduce new insights into the design of polarized 2D LED devices at room temperature and may promote the development of miniaturized 2D optoelectronic devices.  相似文献   

6.
With recent developments in the search for novel device ideas, understanding electron-electron interaction in low dimensional systems is of particular interest. Coulomb drag measurements can provide critical insights in this context. In this article, we present a novel planar graphene double ribbon structure that shows for the first time that Coulomb drag is observable in two adjacent monolayer ribbons in the same plane at room temperature. Moreover, our planar devices enable experimentally study of the impact of the dielectric constant on Coulomb drag which is difficult to explore in the typically used double layer graphene structures. Our experimental findings indicate in particular that the drag resistance is proportional to the dielectric constant (ε) and does not, as recently reported, show an increasing trend of interaction strength for small ε-values. In fact, we find that the drag resistance follows approximately an ε 1.2-dependence. The exponent of “1.2” is consistent with the theory considering the carrier concentration in our samples, and positions our results in between the weak and strong coupling limits.   相似文献   

7.
A dual-gate-controlled single-electron transistor was fabricated by using self-aligned polysilicon sidewall spacer gates on a silicon-on-insulator nanowire. The quantum dot formed by the electric field effect of the dual-gate structure was miniaturized to smaller than the state-of-the-art feature size, through a combination of electron beam lithography, oxidation, and polysilicon sidewall spacer gate formation processes. The device shows typical MOSFET I-V characteristics at room temperature. However, the Coulomb gap and Coulomb oscillations are clearly observed at 4 K.  相似文献   

8.
The mutual influence of the conduction electron system provided by organic donor layers and magnetic system localized in insulating layers of the molecular charge transfer salt κ-(BETS)2FeBr4 has been studied. It is demonstrated that besides the high-field re-entrant superconducting state, the interaction between the two systems plays important role for the low-field superconductivity. The coupling of normal-state charge carriers to the magnetic system is reflected in magnetic quantum oscillations and can be evaluated based on the angle-dependent beating behavior of the oscillations. On the other hand, the conduction electrons have their impact on the magnetic system, which is revealed through the pressure-induced changes of the magnetic phase diagram of the material.  相似文献   

9.
Devices in which the transport and storage of single electrons are systematically controlled could lead to a new generation of nanoscale devices and sensors. The attractive features of these devices include operation at extremely low power, scalability to the sub-nanometre regime and extremely high charge sensitivity. However, the fabrication of single-electron devices requires nanoscale geometrical control, which has limited their fabrication to small numbers of devices at a time, significantly restricting their implementation in practical devices. Here we report the parallel fabrication of single-electron devices, which results in multiple, individually addressable, single-electron devices that operate at room temperature. This was made possible using CMOS fabrication technology and implementing self-alignment of the source and drain electrodes, which are vertically separated by thin dielectric films. We demonstrate clear Coulomb staircase/blockade and Coulomb oscillations at room temperature and also at low temperatures.  相似文献   

10.
The effects of silver doping on the magnetotransport and thermopower of La1?x Ag x MnO3 (0.05≤x≤0.30) have been investigated. For the sample with x=0.05, temperature dependent resistivity exhibits an insulating behavior, while thermopower is found to be large and negative over the measured temperature range. An increase in the Ag doping enhances the conductivity and shifts the metal-insulator transition temperature toward high temperature side. The low temperature thermopower data has been explained in terms of diffusion, magnon drag, and phonon drag effects and found that the magnon drag effect dominates in this region. Finally, the electrical transport in the high temperature region has been analyzed by using adiabatic small polaron hopping mechanism.  相似文献   

11.
We report on our measurements of the transport properties of 0.75 m long insulating indium oxide wires and rings. These devices have no apparent tunnel barriers, yet they exhibit two properties at low temperatures which are characteristic of series arrays of small capacitance tunnel junctions: highly non-linear IV characteristics and a zero-bias conductance which is periodic in a voltage applied by means of a lateral gate. Two types of samples can be distinguished, based on the behaviour of the conductance oscillations at low temperatures. For the first type, the structure of the oscillations remains periodic down to our lowest temperatures, similar to the data from the tunnel junction arrays. For the second type, lowering the temperature results in a transition from periodic to quasi-periodic conductance peaks. A phenomelogical model based on the orthodox theory of the Coulomb blockade is able to account for most of our observations. The temperature and magnetic field dependence of these effects suggest that they are due to the influence of single electron charging on transport through the localized electron states in the indium oxide.  相似文献   

12.
Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12‐time increased valley spitting in single‐layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band‐to‐band tunnel field‐effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n‐MoS2 and heavily doped p‐germanium, etc. Here, it is demonstrated that epitaxially grown single‐layer MoS2 on a lattice‐matched GaN substrate, possessing a type‐I band alignment, exhibits strong substrate‐induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady‐state and time‐resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley‐optoelectronic device applications.  相似文献   

13.
We report a Coulomb blockade induced negative differential resistance (NDR) effect at room temperature in a self-assembly Si quantum dots (Si-QDs) array (Al/SiO2/Si-QDs/SiO2/p-Si), which is fabricated in a plasma enhanced chemical vapor deposition system by using layer-by-layer deposition and in-situ plasma oxidation techniques. Obvious NDR effects are directly observed in the current-voltage characteristics, while corresponding capacitance peaks are also identified at the same voltage positions in the capacitance-voltage characteristics. The NDR effect in dot array, arising from the Coulomb blockade effect in the nanometer-sized Si-QDs, exhibits distinctive scan-rate and scan-direction dependences and differs remarkably from that in the quantum well structure in the formation mechanism. Better understanding of the observed NDR effect in Si-QDs array is obtained in a master-equation-based numerical model, where both the scan-rate and scan-direction dependences are well explained.  相似文献   

14.
The ultrafast growth of high‐quality uniform monolayer WSe2 is reported with a growth rate of ≈26 µm s?1 by chemical vapor deposition on reusable Au substrate, which is ≈2–3 orders of magnitude faster than those of most 2D transition metal dichalcogenides grown on nonmetal substrates. Such ultrafast growth allows for the fabrication of millimeter‐size single‐crystal WSe2 domains in ≈30 s and large‐area continuous films in ≈60 s. Importantly, the ultrafast grown WSe2 shows excellent crystal quality and extraordinary electrical performance comparable to those of the mechanically exfoliated samples, with a high mobility up to ≈143 cm2 V?1 s?1 and ON/OFF ratio up to 9 × 106 at room temperature. Density functional theory calculations reveal that the ultrafast growth of WSe2 is due to the small energy barriers and exothermic characteristic for the diffusion and attachment of W and Se on the edges of WSe2 on Au substrate.  相似文献   

15.
Quantum confined devices of 3D topological insulators are proposed to be promising and of great importance for studies of confined topological states and for applications in low‐energy‐dissipative spintronics and quantum information processing. The absence of energy gap on the topological insulator surface limits the experimental realization of a quantum confined system in 3D topological insulators. Here, the successful realization of single‐electron transistor devices in Bi2Te3 nanoplates using state‐of‐the‐art nanofabrication techniques is reported. Each device consists of a confined central island, two narrow constrictions that connect the central island to the source and drain, and surrounding gates. Low‐temperature transport measurements demonstrate that the two narrow constrictions function as tunneling junctions and the device shows well‐defined Coulomb current oscillations and Coulomb‐diamond‐shaped charge‐stability diagrams. This work provides a controllable and reproducible way to form quantum confined systems in 3D topological insulators, which should greatly stimulate research toward confined topological states, low‐energy‐dissipative devices, and quantum information processing.  相似文献   

16.
We have studied factors influencing the formation of particles with the structure of a spherical metal W core inside a WSe2 shell during pulsed laser deposition (PLD) of thin films of tungsten diselenide under variable conditions (buffer gas (Ar) pressure, substrate temperature). It is established that the metal core is formed at the stage of laser ablation of a synthesized WSe2 target, while the shell grows as a result of condensation, migration, and redistribution of atoms during deposition of a laser-initiated atomic flow on the surface of a growing film. Retardation of the atomic flow by a buffer gas at pressures within 2–10 Pa does not ensure activation of the shell condensation process on the metal core in the gas phase. Increasing the substrate temperature from room temperature up to 250°C leads to transformation of the shell structure from amorphous into laminar.  相似文献   

17.
Carrier injection and subsequent radiative recombination in two vertically stacked (but electronically only weakly coupled) layers of InAs/GaAs self-assembled quantum dots (SADs) embedded in the intrinsic region of a double hetero p-i-n structure was investigated by electroluminescence (EL) spectroscopy in the temperature range from 20 to 300 K. In such structures the filling of the SADs by charge carriers strongly depends not only on the applied voltage, but also on the relative position of the SAD layers within the i-region and on the temperature. The experimental data provide evidence of the dominant role of hole dynamics in the recombination processes in the stacks of SADs. The difference of the electronic structure of the SADs in the top and bottom layers is reflected by independent contributions of the two quantum dot layers to the electroluminescence from the SADs. The possibility to tune the emission spectra by varying the thickness of the GaAs layer between neighbouring SAD layers and by using the indium flush technique is demonstrated.  相似文献   

18.
Magnetic skyrmions are attracting interest as efficient information-storage devices with low energy consumption, and have been experimentally and theoretically investigated in multilayers including ferromagnets, ferrimagnets, and antiferromagnets. The 3D spin texture of skyrmions demonstrated in ferromagnetic multilayers provides a powerful pathway for understanding the stabilization of ferromagnetic skyrmions. However, the manipulation mechanism of skyrmions in antiferromagnets is still lacking. A Hall balance with a ferromagnet/insulating spacer/ferromagnet structure is considered to be a promising candidate to study skyrmions in synthetic antiferromagnets. Here, high-density Néel-type skyrmions are experimentally observed at zero field and room temperature by Lorentz transmission electron microscopy in a Hall balance (core structure [Co/Pt]n/NiO/[Co/Pt]n) with interfacial canted magnetizations because of interlayer ferromagnetic/antiferromagnetic coupling between top and bottom [Co/Pt]n multilayers, where the Co layers in [Co/Pt]n are always ferromagnetically coupled. Micromagnetic simulations show that the generation and density of skyrmions are strongly dependent on interlayer exchange coupling (IEC) and easy-axis orientation. Direct experimental evidence of skyrmions in synthetic antiferromagnets is provided, suggesting that the proposed approach offers a promising alternative mechanism for room-temperature spintronics.  相似文献   

19.
Top and bottom NiO-pinning spin valves of Si/Ta/NiO/Co/Cu/Co/Ta and Si/Ta/Co/Cu/Co/NiO/Ta were prepared by magnetron sputtering, and X-ray diffraction and giant magnetoresistance (GMR) ratio were measured in the temperature range from 5 to 300 K. For the bottom spin valve, the interracial roughness at NiO/Co is much smaller than that of Co/NiO in the top one. The Co/Cu and Cu/Co interfaces have the same roughness in the bottom and the top spin valves. NiO, Co, and Cu layers have (111) preferred orientations in the top one and random orientations in the bottom one. The GMR ratio of the bottom spin valve is larger than that of the top one at all temperatures and their difference increases with decreasing temperature.  相似文献   

20.
The aim of this study was to evaluate microstructures and the influence of test temperature on the tensile properties, strain hardening behavior and fracture characteristics of friction stir welded(FSWed) 2219-T62 aluminum alloy thick plate joints. A fine and equiaxed recrystallized grain structure had no significant change in grains at the top of weld nugget zone(WNZ) at a rotational rate of 500 r/min compared with300 r/min, but the grains and second-phase particles at the middle of WNZ exhibited obvious coarsening. The yield strength, ultimate tensile strength and joint efficiency were observed to decrease with increasing test temperatures. However, the elongation presented a contrast trend. Compared with the middle and bottom slices, the top slice(216 and 342 MPa) had a higher strength and a lower elongation(8.5%) at different test temperatures. Hardening capacity and strain hardening exponent of bottom slices were higher than those of the top and middle slices. Both of them at room temperature(RT) were bigger than those at higher temperature(HT) and lower temperature(LT). The FSWed joints basically failed in the border area between the thermo-mechanical affected zone(TMAZ) and heat-affected zone(HAZ) of the top slice, and in the HAZ of the middle or bottom slices, while the fracture surfaces exhibited dimple fracture characteristics at different test temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号