首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The on‐surface activation of carbon–halogen groups is an efficient route to produce radicals for constructing various hydrocarbons and carbon nanostructures. To date, the employed halide precursors have only one halogen attached to a carbon atom. It is thus of interest to study the effect of attaching more than one halogen atom to a carbon atom with the aim of producing multiple unpaired electrons. By introducing an alkenyl gem‐dibromide, cumulene products were fabricated on a Au(111) surface by dehalogenative homocoupling reactions. The reaction products and pathways were unambiguously characterized by a combination of high‐resolution scanning tunneling microscopy and non‐contact atomic force microscopy measurements together with density functional calculations. This study further supplements the database of on‐surface synthesis strategies and provides a facile manner for incorporation of more complicated carbon scaffolds into surface nanostructures.  相似文献   

4.
Electrodes are ideal substrates for surface localized self‐assembly processes. Spatiotemporal control over such processes is generally directed through the release of ions generated by redox reactions occurring specifically at the electrode. The so‐used gradients of ions proved their effectiveness over the last decade but are in essence limited to material‐based electrodes, considerably reducing the scope of applications. Herein is described a strategy to enzymatically generate proton gradients from non‐conductive surfaces. In the presence of oxygen, immobilization of glucose oxidase (GOx) on a multilayer film provides a flow of protons through enzymatic oxidation of glucose by GOx. The confined acidic environment located at the solid–liquid interface allows the self‐assembly of Fmoc‐AA‐OH (Fmoc=fluorenylmethyloxycarbonyl and A=alanine) dipeptides into β‐sheet nanofibers exclusively from and near the surface. In the absence of oxygen, a multilayer nanoreactor containing GOx and horseradish peroxidase (HRP) similarly induces Fmoc‐AA‐OH self‐assembly.  相似文献   

5.
6.
The aggregation of (pro)chiral/achiral molecules into crystalline structures at interfaces forms conglomerates, racemates, and solid solutions, comparable to known bulk phases. Scanning tunneling microscopy and Monte Carlo simulations were employed to uncover a distinct racemic phase, expressing 1D disordered chiral sorting through random tiling in surface‐confined supramolecularly assembled achiral 4,4′′‐diethynyl‐1,1′:4′,1′′‐terphenyl molecules. The configurational entropy of the 1D disordered racemic tiling phase was verified by analytical modeling, and found to lie between that of a perfectly ordered 2D racemate and a racemic solid solution.  相似文献   

7.
4,4′‐Bis(2,6‐difluoropyridin‐4‐yl)‐1,1′:4′,1′′‐terphenyl (BDFPTP) molecules underwent dehydrocyclization and covalent coupling reactions on Au(111) according to scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations. Self‐assembly of the reactants in well‐defined molecular domains prior to reaction could greatly enhance the regioselectivity of the dehydrocyclization reaction and suppress defluorinated coupling, demonstrating that self‐assembly can efficiently steer on‐surface reactions. Such a strategy could be of great importance in surface chemistry and widely applied to control on‐surface reactions.  相似文献   

8.
9.
Two‐dimensional DNA lattices have been assembled from DNA double‐crossover (DX) motifs on DNA‐encoded surfaces in a site‐specific manner. The lattices contained two types of single‐stranded protruding arms pointing into opposite directions of the plane. One type of these protruding arms served to anchor the DNA lattice on the solid support through specific hybridization with surface‐bound, complementary capture oligomers. The other type of arms allowed for further attachment of DNA‐tethered probe molecules on the opposite side of the lattices exposed to the solution. Site‐specific lattice assembly and attachment of fluorophore‐labeled oligonucleotides and DNA–protein conjugates was demonstrated using DNA microarrays on flat, transparent mica substrates. Owing to their programmable orientation and addressability over a broad dynamic range from the nanometer to the millimeter length scale, such supramolecular architecture might be used for presenting biomolecules on surfaces, for instance, in biosensor applications.  相似文献   

10.
11.
12.
Self‐sorting, simultaneous, and orthogonal operations during the self‐assembly of complex mixtures are commonly observed for biological species but rare in artificial systems. In this study, we designed two gelators (LPF and LPFEG) containing the same chiral phenylalanine core but different achiral peripheral substituents to give hydrogels with opposite supramolecular handedness. When the two hydrogels were mixed, double‐network nanofibers with opposite handedness were formed by spontaneous high‐order organization and self‐sorting of the two gelators. The chiroptical activity of the double‐network hydrogels could be tuned by varying the molar ratio of LPF and LPFEG in the mixture, thus showing that the two gelators were highly independent of each other. Enhanced mechanical properties were observed for the interpenetrating networks when the LPF/LPFEG molar ratio was 3:7, with a more than fourfold increase in both the storage (G′) and loss modulus (G′′) relative to those of the individual hydrogels.  相似文献   

13.
14.
15.
16.
Mussel‐inspired two‐dimensional freestanding, alkyl‐polydopamine (alkyl‐PDA) Janus nanosheets, with a well‐controlled nanometer thickness and a lateral size of up to micrometers, have been developed. A self‐assembled octadecylamine (ODA) bilayer is used as the reactive template for the dopamine polymerization, resulting in the formation of well‐defined nanosheets. The alkyl‐PDA nanosheets show an amphiphilic nature with hydrophilic PDA and hydrophobic alkyl chains on opposing sides. The nanosheets can be used to functionalize many substrates and is dependent on the configuration of surface of the nanosheets. The nanosheets are quite stable, as the morphology is preserved after carbonization at 900 °C. Post‐modification of the nanosheets can be easily achieved because of the reactive nature of PDA. This work will provide a new strategic approach for fabricating polymeric Janus nanosheets, which can find applications for surface modifications, catalyst supports, and guided self‐assembly.  相似文献   

17.
18.
19.
Ullmann coupling of 4‐bromobiphenyl thermally catalyzed on Ag(111), Cu(111), and Cu(100) surfaces was scrutinized by scanning tunneling microscopy as well as theoretical calculations. Detailed experimental evidence showed that initial formation of organometallic intermediates on the surface, as self‐assembled structures or sparsely dispersed species, is determined by the subsequent reaction pathway. Specifically, the assembled organometallic intermediates at full coverage underwent a single‐barrier process to directly convert into the final coupling products, while the sparsely dispersed intermediates at low coverage went through a double‐barrier process via newly identified clover‐shaped intermediates prior to formation of the final coupling products. These findings demonstrate that a self‐assembly strategy can efficiently steer surface reaction pathways and dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号