首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we show that the leakage current properties of BiFeO3 (BFO) thin films have been greatly improved by Zr-doping. In contrast, the magnetic properties of Zr-doped BFO films are affected as a weak ferromagnetism. Beyond the double-exchange interactions arising from the creation of Fe2+, we propose another simple model considering the replacement of the magnetically active Fe3+, time to time, by a non-active Zr4+, which is expected to induce a local ferromagnetic coupling rather than an antiferromagnetic one.  相似文献   

2.
Boron carbon nitride films were deposited by radio frequency magnetron sputtering using a composite target consisting of h-BN and graphite in an Ar-N2 gas mixture. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results suggest that the films are atomic-level hybrids composed of B, C and N atoms. The boron carbon nitride films prepared in the present experiment have a disordered structure. The sputtering power varied from 80 W to 130 W. This sputtering power was shown to have regular effect on the composition of boron carbon nitride films. The samples deposited at 80 W and 130 W are close to the stoichiometry of BC3N. The sample deposited at 110 W is close to the stoichiometry of BCN. The samples deposited at 100 W and 120 W approach to BC2N. It is very significant for us to synthesize boron carbon nitride compound with controllable composition by changing the sputtering power.  相似文献   

3.
4.
A series of La and Mn co-doped Bi5Ti3FeO15 (BLTFMO) thin films were prepared by spin-coating deposition route. X-ray diffraction, atomic force microscopy and scanning electron microscopy were used to characterize the structures of these BLTFMO thin films. Ferromagnetic properties are obtained as the La-doping content is 0, 0.1, 0.2, and 0.3 with the transition temperature of 127.2 K, 65.1 K, 48.1 K, and 7.9 K, respectively. Well-defined ferroelectric loops are found in all these BLTFMO films, and a higher remnant polarization of 27.84, 24.21 and 24.02 μC/cm2 is obtained in the 0.1, 0.2 and 0.3 La-doped films, respectively. A weak dielectric dispersion for the BLTFMO without La-doping, a strong one in 0.1, 0.2, 0.3 and 0.4 La doped films as indicated by the appearance of a dielectric loss peak, and a weak dispersion in 0.6, 0.8 and 1 La doped ones are demonstrated.  相似文献   

5.
高立  张建民 《中国物理 B》2009,18(10):4536-4540
This paper reports that the radio frequency magnetron sputtering is used to fabricate ZnO and Mn-doped ZnO thin films on glass substrates at 500~°C. The Mn-doped ZnO thin films present wurtzite structure of ZnO and have a smoother surface, better conductivity but no ferromagnetism. The x-ray photoelectron spectroscopy results show that the binding energy of Mn_2p3 / 2 increases with increasing Mn content slightly, and the state of Mn in the Mn-doped ZnO thin films is divalent. The chemisorbed oxygen in the Mn-doped ZnO thin films increases with increasing Mn doping concentration. The photoluminescence spectra of ZnO and Mn-doped ZnO thin films have a similar ultraviolet emission. The yellow green emissions of 4~wt.% and 10~wt.% Mn-doped thin films are quenched, whereas the yellow green emission occurs because of abundant oxygen vacancies in the Mn-doped ZnO thin films after 20~wt.% Mn doping. Compared with pure ZnO thin film, the bandgap of the Mn-doped ZnO thin films increases with increasing Mn content.  相似文献   

6.
Thin films of MgTiO3 high-k dielectric have been prepared by RF magnetron sputtering deposition at various substrate temperatures. X-ray diffraction, atomic force microscopy were used to characterize the deposited films. Experimental results show that substrate temperature has little effect on the stoichinometry. The electrical properties of MgTiO3 metal-insulator-metal (MIM) capacitors were investigated at various deposition temperatures, Pt/MgTiO3/Pt/SiO2/n-Si, were studied. It is shown that the MgTiO3 (210 nm) MIM capacitor fabricated at 200 °C shows an overall high performance, such as a high capacitance density of ∼1.2 nF/um2, a low leakage current of 1.51 × 10−9 A/cm2 at 5 V, low-voltage coefficients of capacitance, and good frequency dispersion properties. All of these indicate that the MgTiO3 MIM capacitors are very suitable for use in Si analog circuit application or dynamic random access memory (DRAM) cell.  相似文献   

7.
8.
The properties of neodymium-doped BiFeO3 nanosized films on magnesium oxide single-crystal substrates are studied. The films are obtained using high-frequency sputtering with the aid of layered growth. The structural perfection of the films is analyzed using the X-ray diffraction. The transmission of the films with different thicknesses is studied in the wavelength interval 200–1100 nm. The spectra are processed with the aid of a dispersion formula for permittivity of a sum of oscillators with allowance for damping, so that direct and indirect transitions can be revealed. The absorption edges are estimated to be 2.81 and 2.78 eV for the direct transitions of the films with thicknesses of 14 and 60 nm, respectively.  相似文献   

9.
Optical properties of epitaxial BiFeO3 thin films grown via pulsed-laser deposition on (110) DyScO3 substrates have been investigated. Their near-normal spectroscopic reflectivity was measured in the spectral range 2 to 14 eV at room temperature, while spectroscopic ellipsometry in the spectral range 1–6 eV was measured in the temperature range from 300 to 775 K. The optical response functions have been calculated and a direct optical gap was determined varying from 2.75 to 2.70 eV in this temperature range.  相似文献   

10.
In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO3 and Bi0.85Dy0.15FeO3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO3 samples are obviously broadened after magnetic annealing, whereas those of Bi0.85Dy0.15FeO3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO3 samples, the remnant polarizations (Pr) are suppressed; in contrast, for Bi0.85Dy0.15FeO3 samples, Pr is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed.  相似文献   

11.
TiO2 thin films of different thickness were prepared by the Electron Beam Evaporation (EBE) method on crystal silicon. A variable angle spectroscopic ellipsometer (VASE) was used to determine the optical constants and thickness of the investigated films in the spectral range from 300 to 800 nm at incident angles of 60°, 70°, and 75°, respectively. The whole spectra have been fitted by Forouhi–Bloomer (FB) model, whose best-fit parameters reveal that both electron lifetime and band gap of TiO2 thin film have positive correlation to the film thickness. The refractive indices of TiO2 thin film increase monotonically with an increase in film thickness in the investigated spectral range. The refractive index spectra of TiO2 thin films have maxima at around 320 nm and the maxima exhibit a marginally blue-shift from 327.9 to 310.0 nm with an increase in film thickness. The evolution of structural disorder in the TiO2 thin film growth can be used to explain these phenomena.  相似文献   

12.
Effects of the BiFe0.95Mn0.05O3 thickness and a SrRuO3 (SRO) buffer layer on the microstructure and electrical properties of BiFeO3/BiFe0.95Mn0.05O3 (BFO/BFMO) bilayered thin films were investigated, where BFO/BFMO bilayered thin films were fabricated on the SRO/Pt/Ti/SiO2/Si(100) substrate by a radio frequency sputtering. All thin films are of a pure perovskite structure with a mixture of (110) and (111) orientations regardless of the BFMO layer thickness. Dense microstructure is demonstrated in all thin films because of the introduction of BFMO layers. The SRO buffer layer can also further improve the ferroelectric properties of BFO/BFMO bilayered thin films as compared with those of these thin films without a SRO buffer layer. The BFO/BFMO bilayered thin film with a thickness ratio of 220/120 has an enhanced ferroelectric behavior of 2P r??165.23???C/cm2 and 2E c??518.56?kV/cm, together with a good fatigue endurance. Therefore, it is an effective way to enhance the ferroelectric and fatigue properties of bismuth ferrite thin films by constructing such a bilayered structure and using a SRO buffer layer.  相似文献   

13.
A. Bose 《Applied Surface Science》2010,256(21):6205-6212
PZT thin films of thickness (320-1040) nm were synthesized on Si/SiO2/Ti/Pt multilayered substrates by radio frequency magnetron sputtering. The influence of plasma pressure in the range of (0.24-4.9) Pa, during deposition, on the structural, electrical and ferroelectric properties of the PZT films was systematically studied. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and cross-sectional transmission electron microscopy (XTEM) were employed for structural study. Nano-probe Energy Dispersive (EDX) line scanning was employed to investigate the elemental distribution across the film-bottom electrode interface. I-V characteristics and polarization-electric field (P-E) hysteresis loop of the films were measured. The study reveals that the plasma pressure has a strong influence on the evolution and texture of the ferroelectric perovskite phase and microstructure of the films. At an optimum plasma pressure of 4.1 Pa, PZT films are grown with 93% perovskite phase with (1 1 1) preferred orientation and uniform granular microstructure. These films show a saturation polarization of 67 μC/cm2, remnant polarization of 30 μC/cm2 and coercive field of 28 kV/cm which, according to the literature, seem to be suitable for device applications.Transmission electron microscopy (TEM) study shows that at a plasma pressure of 4.1 Pa, the PZT/bottom Pt interface is sharp and no amorphous interlayer is formed at the interface. At a higher plasma pressure of 4.9 Pa, poor I-V and P-E hysteresis loop are observed which are interpreted as due to an amorphous interlayer at the film-bottom electrode interface which is possibly enriched in Pb, Zr, O and Pt.  相似文献   

14.
Au nanoparticles have been fabricated on normal glass substrates using nanosphere lithography (NSL) method. Vanadium dioxide has been deposited on Au/glass by reactive radio frequency (rf) magnetron sputtering. The structure and composition were determined by X-ray diffraction and X-ray photoelectron spectroscope. Electrical and optical properties of bare VO2 and Au:VO2 nanocomposite thin films were measured. Typical hysteresis behavior and sharp phase transition were observed. Nanopartical Au could effectively reduce the transition temperature to 40 °C. The transmittance spectrum for both Au:VO2 nanocomposite thin film shows high transmittance under transition temperature and low transmittance above transition temperature. The characteristics present the Au:VO2 nanocomposite thin film can be used for applications, such as “smart window” or “laser protector”.  相似文献   

15.
Multiferroic bismuth ferrite (BiFeO3) has attracted considerable attention due to applications related to the bulk photovoltaic effect in which the direction of polarization determines the direction of the photocurrent. Epitaxial thin films are produced by means of techniques that usually require high temperature processes. The hydrothermal method can be seen as an alternative route to obtain highly textured thin films in quantities compatible with batch processing; nevertheless, the structural, dielectric and electric properties are generally affected by the presence of hydrogen and other reaction by-products. In this work, functional and highly textured BiFeO3 films were successfully produced on metallic SrTiO3:Nb (0.5 wt.%) (100) substrates via hydrothermal synthesis. X-ray diffraction (XRD) and Atomic Force Microscopy (AFM) were used to analyze the structural properties of the films. Piezoresponse Force Microscopy (PFM) and Photoconductive Atomic Force Microscopy (Pc-AFM) were used to determine their functional properties. We show the polarization switching and confirm the presence of the bulk photovoltaic effect for the first time in hydrothermally synthesized BiFeO3.  相似文献   

16.
The influence of Tb25Fe61Co14 thin film thicknesses varying from 2 to 300 nm on the structural and magnetic properties has been systematically investigated by using of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, magnetization, and magneto-optic Kerr effect microscopy measurements. Thin film growth mechanism is pursued and controlled by ex-situ X-ray refractometry measurements. X-ray diffraction studies reveal that the Tb25Fe61Co14 films are amorphous regardless of thin films thicknesses. The magnetic properties are found to be strongly related to thickness and preferred orientation. With an increase in film thickness, the easy axis of magnetization is reversed from in-plane to out-of-plane direction. The change in the easy axes direction also affects the remanence, coercivity and magnetic anisotropy values. The cause for the magnetic anisotropy direction change from in-plane to out-of-plane can be related to the preferred orientation of the thin film which depends on the large out-of-plane coercivity and plays an important role in deciding the easy axes direction of the films. According to our results, up to the 100 nm in-plane direction is dominated over the whole system under major Fe-Fe interaction region, after that point, the magnetic anisotropy direction change to the out-of-plane under major Tb-Fe/Tb-Co interaction region and preferred orientation dependent perpendicular magnetic anisotropic properties become more dominated with 2.7 kOe high coercive field values.  相似文献   

17.
Orthorhombic YMnO3 thin films were epitaxially grown on bare and LaNiO3 buffered (0 0 1)-SrTiO3 substrates by pulsed laser deposition under various oxygen pressures from 5 to 30 Pa. The crystal structure and microstructure of these films have been characterized by both X-ray diffractions and transmission electron microscopy. The leakage current, modeled as the space charge limited current (SCLC) mechanism, decreased significantly with the increase of oxygen content. It is further found that the magnetic property of films is greatly enhanced in YMnO3 films grown under high oxygen pressure, which can be explained decreased oxygen vacancies. In addition, bipolar switching behavior was obtained only in the films grown under 30 Pa oxygen pressure, which is attributed to the decrease of voltage-driven oxygen vacancy migration.  相似文献   

18.
FeCoB-SiO2磁性纳米颗粒膜的微波电磁特性   总被引:5,自引:0,他引:5       下载免费PDF全文
采用交替沉积磁控溅射工艺制备了超薄多层的FeCoB SiO2 磁性纳米颗粒膜 .利用x射线衍射仪、扫描探针显微镜、透射电子显微镜分析了薄膜的微结构和形貌特征 .采用振动样品磁强计、四探针法、微波矢量分析仪及谐振腔法测量薄膜试样的磁电性能和微波复磁导率 .重点对SiO2 介质相含量、薄膜微结构对电磁性能产生重要影响的机理做了分析和探讨 .结果表明 :这类FeCoB SiO2 磁性纳米颗粒膜具有良好的软磁性能和高频电磁性能 ,2GHz时的磁导率 μ′高于 70 ,可以应用于高频微磁器件或微波吸收材料的设计  相似文献   

19.
K. Franke  L.M. Eng 《Surface science》2006,600(21):4896-4908
We report on nanoscale experiments with <100 nm lateral resolution being able to differentiate the effective dielectric polarisation Pz, deposited charge density σ, surface dielectric constant εsurface, its voltage dependence εsurface(U), as well as the built-in electric bias voltage Uint in ferroelectric lead zirconate titanate (PZT) thin films. This is possible by combining piezoresponse force microscopy (PFM) and pull-off force spectroscopy (PFS), both methods based on scanning force microscopy (SFM). The differentiation becomes possible since both Pz and σ contribute additively in PFS, while they are subtractive in PFM, hence allowing the two contributions to be separated. εsurface can be quantified by means of the experimental PFS data and the calculated effective penetration depth of PFM developed in a finite element modelling. Finally, Uint and εsurface(U) are derived by an absolute matching of the Pz values measured by PFM and PFS.Our nanoscale results obtained on PZT thin films reveal values for the above specified quantities that have the same order of magnitude as those obtained from macroscopic measurements reflecting the integral response using large electrode areas. However, we stress that the data reported here reveal physical properties deduced on the nanometer scale. Furthermore, they are recorded during one single experimental investigation, using one single set-up only.  相似文献   

20.
郭红力  杨焕银  唐焕芳  侯海军  郑勇林  朱建国 《物理学报》2013,62(13):130704-130704
利用射频磁控溅射技术在LaNiO3/SiO2/Si(100)基底上制备了厚 度约为250 nm的0.65PMN-0.35PT(PMN-PT)薄膜. 研究高压氧氛围退火方式对PMN-PT薄膜晶体结构、形貌以及电学性能的影响. 经过XRD测试发现,在高压氧气氛围中, 温度为400℃下退火后的PMN-PT薄膜具有纯的钙钛矿相结构, 具有完全的(100)择优取向, 且衍射峰尖锐, 表明经过高压退火后的薄膜结晶极为充分. SEM表面形貌测试结果显示, 经高压退火处理的PMN-PT薄膜表面呈现出棒状或泡状的形貌. 铁电性能测试表明: 氧气氛围压强4 MPa, 退火时间4h的PMN-PT薄膜样品具有较好的铁电性能, 其剩余极化强度Pr达到10.544 μC/cm2, 且电滞回线形状较好, 但漏电流较大, 这可能是由于其微结构所导致.同时介电测试发现: PMN-PT薄膜样品具有极好的介电性能, 其在1 kHz下测试的介电常数εr达到913, 介电损耗tgδ 较小, 仅为0.065. 关键词: 射频磁控溅射 高压退火 0.65PMN-0.35PT 介电  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号