首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
利用数值模拟方法研究了不同的上游阻挡建筑布局下,行列式和错列式街谷内气流速度和污染物浓度场特征.结果指出,阻挡建筑的存在改变了街谷内的二次流,从而对流场和浓度场均有明显影响.在行列式街谷中,无论上游建筑以何种布局存在,都会减小街谷内污染物浓度.若不考虑上游建筑的存在,将会过高估计行列式街谷内污染程度;在错列式街谷中,与街谷建筑并列的上游阻挡建筑会减小街谷内污染物浓度,而与街谷建筑错列布置的阻挡建筑会增大街谷内污染物浓度;数值模拟结果还表明,街谷内污染物的扩散和清除效果受气流速度和涡流特性的共同作用.  相似文献   

2.
城市街道中复杂的高架桥结构会影响街谷内污染物的扩散.本文利用CFD软件FLUENT,采用标准k-ε方程和组分输运方程,对含双层高架桥的理想街谷内空气流场和CO浓度场进行了数值模拟.结果表明,高架桥破坏了理想街谷内CO浓度分布的爬墙效应,自地面沿高度方向CO浓度逐渐减小,超过每层高架桥面后激增,而后再次降低.双层高架桥改变了污染面源位置和街谷内流场分布.当双层高架桥都处于街谷内部时,来流风垂直于街谷方向自左向右吹送,街谷内涡旋整体结构保持顺时针方向,高架桥附近出现小涡旋,使得CO在街谷内部循环,引起背风面和街谷内CO平均浓度的升高,高架桥的"盖子效应"显著,与无高架桥街谷相比,CO平均浓度升高39.5%.当双层高架的上层高架与街谷建筑顶部持平,下层高架桥位于街谷中部时,街谷内部产生4个较大涡旋,能够显著地提高街谷内地面和背风面CO扩散速率,高架桥的"盖子效应"被破坏;与无高架桥街谷相比,CO平均浓度仅升高8.7%,与双层高架桥都处于街谷内相比,CO平均浓度降低22.1%,为城市多层高架桥建设提供了参考依据.  相似文献   

3.
采用数值模拟的方法,研究了街谷内上风建筑与上游阻挡建筑的间距(D),即上游建筑间距,对街谷内空气流动特性和气态污染物分布规律的影响.模拟结果表明,街谷内迎风区的气流速度基本不随D的变化而变化,而背风区和中心区的气流速度随着D的增加呈现先减小后增大的趋势,并在D=90m时,气流速度达到最小值.相应地,在D=90m时街谷内污染物浓度最高,表明D存在最不利值,在城市规划中应尽可能避免该间距.当D大于90m时,D越大,污染物浓度越低,而D小于90m时,D越小,污染物浓度也越低,可以同时实现节约用地和减小交通污染的目的.  相似文献   

4.
机动车尾气是城市大气污染物主要来源之一,其排放集中在城市街谷内靠近地面的空间,行驶车辆诱导的空气流动及湍流是影响街谷内空气流动与污染物扩散的重要因素。该文基于大涡模拟的湍流模型,用拉格朗日方法跟踪城市街谷内的行驶车辆,模拟行驶车辆影响下城市街谷内流场的演化过程,分析街谷内瞬时流场变化及行驶车辆诱导空气流动及湍流的产生机理。模拟结果表明:连续的行驶车流能够在其车道上方靠近地面的空间引起与车辆行驶方向相同的相对稳定的风场;街谷横截面上的瞬时流场中存在局部子涡,局部子涡形成在行驶车辆车身周围,携带车辆引起空气扰动的能量,并将其携带的能量传递给周边空气。行驶车辆以局部子涡的形式向周边空气传递的能力主要影响街谷内的空气湍流,也是行驶车辆影响街谷内空气湍流的主要方式。因此参数化模式的发展中应该重点考虑反映车辆诱导湍流的空间分布特征。  相似文献   

5.
城市街谷内热不稳定流动是促进污染物扩散的重要影响因素之一.本文基于街谷内热平衡分析,结合大涡模拟方法,研究了一个南北走向的城市街谷内温度、风场的日变化特征,并分析了壁面对流换热及长波辐射对街谷内环境的影响.结果显示:壁面对流换热是影响街谷内温度、风场的主要因素,而长波辐射的影响非常小,长波辐射引起街谷内空气温度升高不足对流换热影响的10%,而其对平均风速和脉动量的影响更是在2%和1%以内;街谷内空气温度从早上开始逐渐增加,到15:00的时候达到最大,可达311 K(38℃);上午时段,迎风面壁面热浮力减弱街谷内风速,街谷底部和迎风墙侧的脉动量根均方值较大,而下午时段街谷顶部的脉动量根均方值达到最大.街谷内不同位置和不同时段内,通过建筑材料选择和表面结构设计,适当调控建筑壁面的温度,可以促进街谷内温度分布和空气流通改善.  相似文献   

6.
本文对关于街谷内空气流动及污染物扩散的研究进行评述.通过街谷物理模型及边界条件的分析.揭示影响街谷内空气流动与污染物扩散的物理因素.为进一步的数值预报模式的研究和数值模拟精度的提高提供思路.本文发现街谷几何结构和变化的背景风速、风向是影响街谷内空气流动与污染物扩散的主要因素.而街谷内大气稳定度和行驶车辆诱导湍流能很大程...  相似文献   

7.
利用CFD数值模拟方法研究了气温层结与地面加热作用对街谷环流和污染物扩散的影响.针对高宽比为0.5和1.0的两种街谷,总共进行了18组敏感性数值试验,结果表明相对于气温层结,地表加热是决定街谷附近污染物扩散能力的更为重要的因素,地表加热作用可显著提高街谷的扩散能力.在地表存在加热的情况下,流场结构、空气交换系数、湍流强度总体上均朝着有利于清除街谷内污染物的方向发展,即使是在稳定层结下,地表加热作用所产生的热力环流也会使得污染物能够被有效地输送和扩散到街谷之外,从而使得近地面的污染物浓度下降.  相似文献   

8.
建筑间距对大气流动及输移特性影响的模拟研究   总被引:3,自引:3,他引:0  
采用修正的k-ε湍流模型对不同建筑间距情况下的大气流场、污染物浓度场进行模拟研究。模拟研究结果表明,气流遇到建筑物发生绕流,风速为3m/s的气流在建筑物附近的最大抬升速度达到1.98m/s,气流绕过建筑物后湍动能增强,建筑物后污染物的扩散区域变大;建筑物的布局对气流流动和污染物浓度分布有着很大影响,在不同建筑间距情况下,建筑物尾流区的流场形态有着明显的不同,尾流区内污染物的分布也存在差别。研究结果对认识多个建筑物附近的气流和污染物分布有重要意义。  相似文献   

9.
该文基于CFD软件,建立城市街道峡谷颗粒物扩散的三维模型,采用标准k-ε两方程模型模拟城市街谷内的连续气流场,在此基础上采用离散相模型(DPM)对高宽比为2的街谷内颗粒物浓度场进行了数值模拟,给出了不同风向下空气流场和迎风壁面、背风壁面以及人体呼吸高度处街谷颗粒物浓度的分布。计算结果表明,风向对街谷壁面颗粒物浓度的分布有着显著影响:0°风向下风速为0.4m/s时,街谷壁面颗粒物积累浓度最大,流场呈现出明显的二维特性,不利于颗粒物扩散;其次是45°风向2 m/s风速;90°风向下风速为6m/s时最有利于街谷颗粒物浓度的扩散。外部大气湍流的驱使使得垂直风向街区内产生强烈漩涡,导致相同风速下街谷背风壁面颗粒物浓度均高于迎风壁面颗粒物浓度。  相似文献   

10.
街道峡谷对称性对污染物扩散的影响   总被引:1,自引:0,他引:1  
采用数值模拟的方法,研究了行列式和错列式街谷两侧建筑物的对称性对街谷内和下游建筑尾流区污染物浓度的影响,并引入3个用于评价室内空气环境的指标来描述街谷中人员区域内的空气质量.结果表明,平均残留时间(ART)和有效通风率(PFR)可用于评价不对称街谷内的空气质量.街谷的不对称性对街谷内部和下游建筑尾流区污染物浓度分布均有明显影响.下游建筑越低,则尾流区的浓度越高.行列式和错列式街谷中人员活动空间的无量纲平均浓度分别在建筑高度比例为7/3和7/2时最大.为在城市规划中尽可能避免出现最不利比例的街谷,根据平均残留时间和有效通风率等指标,给出了上下游建筑高度比与最不利街谷改善率的关系.  相似文献   

11.
壁面加热作用对街道峡谷污染物扩散的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
胡伟  钟秦 《中国环境科学》2009,29(9):908-913
采用CFD软件Fluent研究了不同壁面加热条件下街道峡谷内流场及污染物浓度分布情况.结果表明,当街道高宽比(H/W)为1.33时,在低风速(u=1m/s)条件下,当壁面与周围大气无温差时,街道峡谷内存在一个稳定的顺时针大漩涡,污染物在背风侧堆积.当背风面、地面和背风面分别被加热时,峡谷内流场分布与无温差时相似,此时峡谷内的湍流强度增强,导致污染物浓度降低.当迎风面被加热时,峡谷内流场由原来的单漩涡结构变为双漩涡结构,此时街道峡谷下部浓度较高,上部浓度相对较低.当地面和迎风面同时被加热,温差较小(?θ=2℃)时,街道峡谷内流场由单漩涡结构变为双漩涡结构; 温差增大为5℃,峡谷内由双漩涡分裂成了3个漩涡,此时污染物分布与迎风面被加热情况相似.通过实测值和模拟值的比较可知,Fluent软件对街道峡谷大气环境的模拟结果基本合理.  相似文献   

12.
动态风场及交通流量下街道峡谷内污染物扩散模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
王乐  张云伟  顾兆林 《中国环境科学》2012,32(12):2161-2167
根据现场实测数据,应用标准k-ε模型研究了动态风场及交通流量下三维街道峡谷内的污染物扩散规律,数值模拟利用CFD软件FLUENT,其中动态风场和车流量变化信息通过用户自定义编程实现.结果发现,动态风场下空气在街道内部不断经历膨胀和压缩的过程,街道峡谷内部流场形态时刻都在变化;当风速由大变小时,空气膨胀出街谷,流型呈近似椭圆形分布;当风速由小变大时,空气压缩在街谷内部,流型呈近似圆形分布.风速的不断变化引起街谷内、外大气的压缩和膨胀过程,这种过程能够改善街谷内污染物的扩散情况.背风面行人高度处,动态来流下的平均污染物浓度要比定常来流下低17.7%;迎风面行人高度处,动态来流下的平均污染物浓度要比定常来流下低27.1%.动态环境下污染物浓度的分布和峰值由风场和车流量变化共同决定.  相似文献   

13.
A photochemistry coupled computational fluid dynamics (CFD) based numerical model has been developed to model the reactive pollutant dispersion within urban street canyons, particularly integrating the interrelationship among diurnal heating scenario (solar radiation affections in nighttime, daytime, and sun-rise/set), wind speed, building aspect ratio (building-height-to-street-width), and dispersion of reactive gases, specifically nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) such that a higher standard of air quality in metropolitan cities can be achieved. Validation has been done with both experimental and numerical results on flow and temperature fields in a street canyon with bottom heating, which justifies the accuracy of the current model. The model was applied to idealized street canyons of different aspect ratios from 0.5 to 8 with two different ambient wind speeds under different diurnal heating scenarios to estimate the influences of different aforementioned parameters on the chemical evolution of NO, NO2 and O3. Detailed analyses of vertical profiles of pollutant concentrations showed that different diurnal heating scenarios could substantially affect the reactive gases exchange between the street canyon and air aloft, followed by respective dispersion and reaction. Higher building aspect ratio and stronger ambient wind speed were revealed to be, in general, responsible for enhanced entrainment of O3 concentrations into the street canyons along windward walls under all diurnal heating scenarios. Comparatively, particular attention can be paid on the windward wall heating and nighttime uniform surface heating scenarios.  相似文献   

14.
城市街道峡谷结构对近地面边界层的风场环流等气象要素具有重要影响,可导致城市局地空气污染分布发生变化.随着城市化发展及城市空气质量变化,街道峡谷的城市空气污染影响日益突出,分析街道峡谷内部风场成为认识和治理我国城市空气污染的一条重要途径.鉴于目前我国鲜有城市街道尺度大气边界层精细气象观测研究,本文分析了美国俄克拉荷马大学的街道峡谷精细气象观测数据及其FLUENT模拟.结果表明:街道峡谷内风场结构变化依赖大气背景风向,当背景风向平行于街道峡谷走向时,街谷两岸风速几乎没有差异,而在背景风向垂直于街道峡谷走向时,由于高空风进入街谷形成的涡旋气流对街道峡谷风场有补充作用,峡谷两侧中层高度风场差异变大,风速差值大约为0.5 m·s~(-1),且街道峡谷两岸风速差异得到了FLUENT模式的验证,但模式对迎风岸的风速模拟存在高估,模拟的中层高度处两岸风速差值为1.6 m·s~(-1).观测资料分析揭示大气边界层稳定度条件对街道峡谷内风场分布也有很大影响,中性稳定条件下街道峡谷两岸近地层风速差异最大,输送进入峡谷空间的风速增量比原峡谷内风速大约高1倍,其它稳定度条件下街谷两岸风速差异被削弱.  相似文献   

15.
湍流模型对预测街道峡谷污染物扩散的影响   总被引:1,自引:0,他引:1  
文章选取标准k-ε湍流模型、RNGk-ε湍流模型、realizablek-ε湍流模型和单方程Spalart-Allmaras涡黏系数模型对街道峡谷附近的流动和汽车尾气污染物扩散进行了模拟,并与风洞试验值进行了比较,结果表明,4种模型对街谷壁面的浓度预测在趋势上与试验值基本一致,Spalart-Allmaras模型的预测效果最好,realizablek-ε模型预测最差,而标准k-ε模型和RNGk-ε模型的预测介于其间;RNGk-ε模型和realizablek-ε模型的修正作用在预测建筑物尖角和顶部附近的流动处有所体现,但对街谷内浓度分布的预测仍不如标准k-ε模型;本文从流场分布的特点对4种模型的浓度预测差别进行了解释,证明了壁面浓度与其附近的速度和湍流黏性系数的分布相对应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号