首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doubly charged ion mass spectra of 22 amines (2–10 carbon atoms) were determined using an Hitachi RMU-7L double focusing mass spectrometer. Molecular ions were not observed in the spectra of aliphatic amines. The most intense product ion peaks in the spectra of lower molecular weight amines resulted from hydrogen elimination from the molecular ion; however, as amine molecular weight increased the largest peaks resulted from both hydrogen and heavy atom elimination from the molecular ion. Dominant ions in the doubly charged ion spectra of lower molecular weight aliphatic amines were from reactions of [CnH3N]2+ (n:=2, 3, 4) type ions. The spectra of higher molecular weight aliphatic amines spanned a wide mass range. Appearance energies for some of the more prominent ions were measured in the range from 25 to 49 eV. A geometry optimized quantum mechanical self-consistent field molecular orbital treatment was used to compute the energies and structural parameters of prominent ions in the doubly charged ion mass spectra.  相似文献   

2.
Doubly charged ion mass spectra of 20 aliphatic and 3 aromatic acetylenic compounds have been measured using a double focusing Hitachi RMU-7L mass spectrometer. Spectra were obtained using 100 eV ionizing electron energy and 3.2 kV ion accelerating voltage. In general, the spectra of aliphatic type acetylenic compounds were dominated by fragment ions formed by extensive H loss from doubly charged molecular ions. Intense molecular ions were observed in the doubly charged ion spectra of phenyl-substituted acetylenes. Total product ion intensities for doubly charged ion spectra of acetylenic compounds were found to be smaller, in general, than the total product ion intensity observed in the benzene doubly charged ion mass spectrum. Measured appearance energies of intense product ions ranged from 24 to 47 eV. A geometry optimized quantum mechanical self-consistent field molecular orbital treatment was employed to compute energies and structural parameters of prominent ions in the doubly charged ion mass spectra of acetylenic compounds.  相似文献   

3.
Doubly charged ion mass spectra have been obtained for 15 n-alkane hydrocarbons. Spectra were measured using a Nier-Johnson geometry Hitachi RMU-7L mass spectrometer operated at 1.6kV accelerating voltage. Fragment ions, which resulted from C? C bond rupture and extensive H loss, dominated the spectra. Molecular ions have not been observed. The most intense ions in the doubly charged ion mass spectra of n-alkanes were [C2H4]2+, [C3H2]2+, [C4H3]2+, [C5H2]2+, [C6H6]2+, [C6H8]2+, [C7H6]2+, [C7H8]2+, [C8H6]2+ and [C8H8]2+. Appearance energies for forming the prominent doubly charged fragment ions have been measured and range from 27.5 eV to energies greater than 60eV. A geometry optimized SCF approach has been used to compute the energies and structures of prominent ions in the doubly charged mass spectra.  相似文献   

4.
The doubly charged isomeric ions [C6H7N]2+ formed from 2-, 3- and 4-methylpyridine and aniline were investigated via their unimolecular charge separation reactions and by electron capture induced decompositions (ECID). The ECID spectra were compared with the collision induced decomposition (CID) spectra of the singly charged ions in an attempt to investigate the structure of the doubly charged ions. The four isomers could be unambiguously identified by their unimolecular charge separations. These differences were greater than in the mass spectra, ECID spectra or CID spectra of singly charged ions.  相似文献   

5.
Benzene, toluene, phenol, diphenyl ether and the three isomeric dihydroxy-benzenes have been examined using an MS-9 mass spectrometer under conditions that allowed only ions having twice the normal amount of kinetic energy to be detected. These ions are, in fact, singly charged ions arising from charge exchange reactions of doubly charged ions of the same mass, occuring in the first field free region of the Spectrometer. It is argued that the spectra obtained yield essentially the distribution of doubly charged ions in the source region. These ‘doubly charged ion’ mass spectra are compared with the normal singly charged ion spectra of the compounds and the implications of the significant differences that are found, are discussed.  相似文献   

6.
The doubly charged ion mass spectra for 12 aliphatic nitriles (1–9 carbon atoms) have been obtained using an Hitachi RMU-7L double focusing mass spectrometer. These spectra show some characteristic features such as extensive loss of hydrogen and the grouping of ions in the spectra into n-1 groups where n is the number of carbon atoms in the molecule (n<6). There are no indications of HCN or CN loss in the doubly charged ion spectra of the monosubstituted nitriles. SCF calculations of the energy and structure of doubly charged ions in the propionitrile spectra have been carried out.  相似文献   

7.
Mass spectra of doubly charged mercury clusters (m/z=30-1065) were investigated by secondary ion mass spectrometry. Positively charged ions were generated from an amalgam of mercury and silver by bombardment with a xenon ion beam and mass analysis by a grand-scale sector type mass spectrometer. Hg n 2+, n=1-10 and Hg n +, n =1- 5 were observed. Some doubly charged mercury clusters, (Hg n 2+) survived at least for 0.1 ms.  相似文献   

8.
Doubly charged ion mass spectra were obtained for 46 low molecular weight oxygen containing compounds. A double focusing Hitachi RMU-7L mass spectrometer, operated at 3.2 kV accelerating voltage, was used to measure spectra for aliphatic alcohol, ketone, ether, aldehyde, ester and acid molecules, as well as several aromatic oxygen containing compounds. In general, the spectra were dominated by fragment ions which resulted from extensive H loss and C? C bond rupture as well as O elimination from the doubly charged molecular ions. Total product ion intensities from doubly charged ion spectra of aliphatic oxygen containing compounds were approximately 1% of the corresponding total ion intensity in the benzene doubly charged ion spectrum. Appearance energies for forming prominent doubly charged molecular and fragment ions were determined. Measured values ranged from 26 to 45 eV. A geometry optimized quantum mechanical SCF treatment was used to compute the energies, charge densities and structures for several of these oxygen containing doubly charged ions.  相似文献   

9.
Doubly charged ion mass spectra have been obtained for 42 chlorinated and brominated n-alkane (methyl through octyl) hydrocarbons. A double focusing Hitachi RMU-7L mass spectrometer, operated at 1.6kV accelerating voltage, has been used to measure the spectra. Molecular doubly charged ions have not been observed. Intense fragment ions have been produced from extensive H and halogen loss as well as C? C bond rupture of the parent molecule. The most abundant ions in the doubly charged ion spectra observed in this investigation resulted from reactions of [Cl]2+˙, [Br]2+˙, [CCL2]2+, [C2H2Cl]2+˙, [C3H2]2+, [C3HCl]2+, [C3HBr]2+, [C4H3]2+˙, [C4H4]2+, [C4H6Br]2+˙, [C4H8Br]2+˙, [C5H2]2+, [C6H6]2+, [C6H8]2+ and [C7H8]2+. The prominent doubly charged fragment ions formed by electron impact of the smaller halogenated alkanes generally contained halogen, whereas ions of the type [CnHx]2+ were dominant in the spectra of higher molecular weight mono- and dihalogenated alkanes. Appearance energies of several ions have been measured. A geometry optimized quantum mechanical SCF treatment has been used to compute energies, charge densities and structures of doubly charged halogenated alkane ions.  相似文献   

10.
Doubly charged ion mass spectra of alkyl-substituted furans and pyrroles were obtained using a double-focusing magnetic mass spectrometer operated at 3.2 kV accelerating voltage. Molecular ions were the dominant species found in doubly charged spectra of lower molecular weight heterocydic compounds, whereas the spectra of the higher weight homologues were typified by abundant fragment ions from extensive decomposition. Measured doubly charged ionization and appearance energies ranged from 22.8 to 47.9 eV. Ionization energies were correlated with values calculated using self-consistent field–molecular orbital techniques. A multichannel diabatic curve-crossing model was developed to investigate the fundamental organic ion reactions responsible for development of doubly charged ion mass spectra. Probabilities for Landau–Zener type transitions between reactant and product curves were determined and used in the collision model to predict charge-transfer cross-sections, which compared favorably with experimental cross-sections obtained using time-of-flight techniques.  相似文献   

11.
The fragmentation pattern of CH4 was experimentally studied at an intensity of approximately 10(14) W/cm2 with laser durations varying from 8 to 110 fs. When the laser duration was 8 fs, only the primarily fragmental CH3+ ion was observed in addition to the parent CH4+ ion. When the laser duration was 30 fs, small fragmental CH2+ and H+ ions appeared. When the laser duration was 110 fs, some doubly charged ions were also observed in addition to the abundant singly charged ions. The large mass spectra difference demonstrated that the pulse duration had a strong effect on the fragmentation of the parent ion produced in the single ionization. The effect of laser intensity on the fragmentation of CH4+ was also studied for few-cycle femtosecond laser pulses. The results demonstrated that the first-return recollision between the rescattered electron and the parent ion played a significant role in the fragmentation dynamics of the parent ion. Depending on the ion-electron impact energy, the recollision excited the parent ion to a dissociated state or doubly charged state. The experimentally observed singly charged fragmental ions resulted from the recollision-induced dissociation of CH4+ or the Coulomb explosion of CH(4)2+.  相似文献   

12.
Clusters of Ar, Kr, Xe, N2, O2, CO2, SO2 and NH3 formed by supersonic nozzle expansion have been studied by electron impact ionization mass spectrometry (up to 15000 amu). Besides mass spectra of singly charged ions showing the characteristic anomalous distributions, we have in particular investigated the properties of multiply charged cluster ions. Critical appearance sizes of doubly and triply charged cluster ions, n2 and n3 respectively, found in the present study confirm recent theoretical predictions about n3/n2 and their dependence on the properties of the cluster constituents. The appearance energies of multiply charged cluster ions determined are shifted way below the appearance energies of the respective monomer ions. These huge red shifts together with the observed linear threshold laws and large maximum ionization efficiencies indicate that multiply charged cluster ions are produced by sequential single ionization events of one incoming electron at different cluster sites. Furthermore, we have also obtained for the first time clear evidence that (for electron energies above the appearance energy of doubly charged ions) an appreciable amount of singly charged (also fragment) ions is produced via Coulomb explosion of unstable doubly charged ions in the ion source.  相似文献   

13.
Doubly charged molecular anions M2? of fullerenes are formed in the gas phase under chemical ionization conditions with isobutane as the reagent gas. The efficiency of double electron attachment increases with increasing size of the fullerenes: the C ion is the most abundant doubly charged anion in the negative-ion CI mass spectrum, although the concentration of C70 was about 12% in the fullerene mixture examined. Under low-energy collision-induced dissociation conditions an electron is ejected from the doubly charged C ion resulting in the singly charged molecular anion C˙. This process appears to be the first report of the ejection of an electron (electron stripping) from a doubly charged anion in the gas phase: .  相似文献   

14.
The formation of molecular ions, M+., under fast atom bombardment (FAB) conditions using a liquid matrix was examined by using a new type of synthesized compounds in which preferential M+. peaks appear in their FAB spectra. The FAB spectra were compared with the corresponding mass spectra obtained by the electron impact (EI) ionization, chemical ionization (CI) and charge-exchange ionization (CEI) methods. All of the spectra showed preferential peaks of M+. ion and a characteristic intense fragment ion peak originating from a β-fission. The FAB spectra were similar in the fragment ions appearing in the EI spectra and were very similar in the fragmentation pattern to the CEI spectra using Ar+. and Xe+. as the reagent ions. Further, the FAB spectra did not show any doubly charged ion peaks, while the 70 eV EI spectra showed the peaks of doubly charged molecular and/or fragment ions. The isobutane CI spectra of the synthesized compounds suggested that the formation of M+. ions occurred through the CE reaction with isobutane ion, C4H10+., and the CI spectra showed a marked intense fragment ion peak originating from the β-fission which seemed to occur characteristically in CEI processes. The results obtained suggested that the formation of M+. ions under matrix FAB conditions occurred mainly by CE reactions between the analytes M and matrix molecular ions B+. and/or fragment ions b+..  相似文献   

15.
Doubly charged ion mass spectra for 15 aromatic hydrocarbons have been obtained using a Nier-Johnson geometry, Hitachi RMU-7L mass spectrometer operating at 1.6 kV accelerating voltage. The doubly charged ion spectra have features that are characteristic of the individual compounds. Unsaturated aromatic molecules show intense molecular ions in contrast to saturated, substituted or heteroatom compounds which undergo extensive fragmentation. Ionization energies for forming doubly charged molecular ions and appearance energies for the prominent doubly charged fragment ions have been measured. Calculations of the SCF energies and structures of various doubly charged ions have been carried out. Measured and calculated ionization/appearance energies are in reasonable accord and lend support to the suggested ion structures.  相似文献   

16.
Electrospray ionization (ESI) of tryptophan gives rise to multiply charged, non‐covalent tryptophan cluster anions, [Trpn–xH]x?, in a linear ion trap mass spectrometer, as confirmed by high‐resolution experiments performed on a Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The smallest multiply charged clusters that can be formed in the linear ion trap as a function of charge state are: x = 2, n = 7; x = 3, n = 16; x = 4, n = 31. The fragmentation of the dianionic cluster [Trp9–2H]2? was examined via low‐energy collision‐induced dissociation (CID), ultraviolet photodissociation (UVPD) at 266 nm and electron‐induced dissociation (EID) at electron energies ranging from >0 to 30 eV. CID proceeds mostly via charge separation and evaporation of neutral tryptophan. The smallest doubly charged cluster that can be formed via evaporation of neutral tryptophans is [Trp7–2H]2?, consistent with the observation of this cluster in the ESI mass spectrum. UVPD gives singly charged tryptophan clusters ranging from n = 2 to n = 9. The latter ion arises from ejection of an electron to give the radical anion cluster, [Trp9–2H]?.. The types of gas‐phase EID reactions observed are dependent on the energy of the electrons. Loss of neutral tryptophan is an important channel at lower energies, with the smallest doubly charged ion, [Trp7–2H]2?, being observed at 19.8 eV. Coulomb explosion starts to occur at 19.8 eV to form the singly charged cluster ions [Trpx–H]? (x = 1–8) via highly asymmetric fission. At 21.8 eV a small amount of [Trp2–H–NH3]? is observed. Thus CID, UVPD and EID are complementary techniques for the study of the fragmentation reactions of cluster ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Doubly charged ion mass spectra of 23 alkenes have been measured using a double focusing Hitachi RMU-7L mass spectrometer. Ion mass spectra were obtained using 100 eV electron energy and 3.2 kV ion accelerating voltage. Each 2E spectrum was determined using the olefinic compound under investigation as the target gas. In general, spectra are dominated by fragment ions which result from extensive hydrogen loss from the doubly charged molecular ion. Appearnce energies have been measured for intense fragment ions in each spectrum.  相似文献   

18.
The positive-ion mass spectra of twelve organic dyes used as molecular probes were measured using liquid secondary ion mass spectrometry (LSIMS). Nine of the twelve dyes were singly charged cations and the other three were doubly charged cations. The mass spectra of each of the dyes in m-nitrobenzyl alcohol contain abundant signals for the intact cation, C+ (singly charged cation dyes), or for singly-charged forms of the doubly charged cation formed by proton loss, [C2+? H+]+, or halogen counter ion attachment, [C2+ + X?]+. Fragmentation is usually minimal under the conditions used. However, the cations of five of the singly charged compounds appear to undergo charge-remote fragmentation. Collision-induced dissociation experiments on a hybrid mass spectrometer of EBqQ geometry at collision energies up to 300 eV failed to access this fragmentation pathway. In contrast to the LSIMS of many other doubly charged organic compounds, two of the dicationic dyes produced a doubly charged ion of reasonable abundance (2–20%) in the mass spectrum. When glycerol was used as a matrix solvent, the addition of the matrix modifier trifluoroacetic acid increased the abundance of C2+.  相似文献   

19.
The influence of the collision gas on doubly charged ion mass spectra of a selected number of hydrocarbons has been examined. Relative abundances of various product ions in 2E spectra, resulting from charge exchange collisions of doubly charged hydrocarbon ions, do not vary drastically as the collision gas is varied. However, the absolute intensities of these doubly charged ion mass spectra increase significantly when the collision gas is changed from argon to methane to isobutane. Tbese observations are rationalized in terms of a multichannel diabatic curve crossing model.  相似文献   

20.
Ions ejected from a liquid metal ion source of an Li-Mg (10 atom %) alloy have been investigated by using a magnetic mass analyzer. In addition to singly charged homonuclear Li n + (n ≤ 9) and Mg n + (n ≤ 4) and heteronuclear MgmLi n + (m, n ≤ 2) clusters, doubly charged diatomic and triatomic Mg clusters are observed. Discussion is focused on the observability and the formation mechanism of the doubly charged small Mg clusters. A postionization process is suggested for the formation of the doubly charged clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号