首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of microwave energy in the drying of deformable material such as gel considerably reduces drying time and enables the control of retraction in the sample. A further advantage is that no hot spots are produced, allowing a dry product of superior quality to be obtained.The aim of this work has been to determine the kinetics of the convective-microwave drying process of agar gel plates. For this purpose, we developed a pilot closed loop, computer-controlled apparatus of convective-microwave drying, that enables the drying air conditions to be changed and the microwave power to be supplied over a wide value range. The equipment also records the sample surface temperature by means of an infrared thermometer. The drying curves obtained for plane geometry present four different drying phases: an initial phase where a rapid increase in the drying rate and in the surface temperature can be observed, as well as a constant rate phase that ends in the so-called convective critical moisture content, a first falling rate phase that concludes in the microwave critical moisture point, and finally a second falling rate phase. Combined convective-microwave drying enables a considerable reduction in drying time compared to convective drying, the time required being inversely proportional to the microwave power supplied. The empirical equation that best represents the kinetics is of the Page type. The absorbed volumetric power in terms of the moisture content was experimentally estimated, with the experimental data fitting an empirical equation.  相似文献   

2.
Combined convective-microwave drying enables a considerable reduction in drying time compared to convective drying, the time required for the process being inversely proportional to the microwave power applied. This work presents the convective-microwave drying experiments carried out using agar gel plates conducive to studying the influence on drying kinetics of parameters such as the microwave power applied, sample thickness, and air conditions (humidity, temperature, airflow).  相似文献   

3.
Combined convective-microwave drying enables a considerable reduction in drying time compared to convective drying, the time required for the process being inversely proportional to the microwave power applied. This work presents the convective-microwave drying experiments carried out using agar gel plates conducive to studying the influence on drying kinetics of parameters such as the microwave power applied, sample thickness, and air conditions (humidity, temperature, airflow).  相似文献   

4.
COMBINED MICROWAVE AND CONVECTIVE DRYING OF A POROUS MATERIAL   总被引:1,自引:0,他引:1  
A model is formulated to describe the drying of a slab of porous material in a combined microwave and convective environment. The model describes the evolution of temperature, pressure, moisture and power distributions that occur during the drying process. The microwave internal heat source is calculated from electromagnetic theory with varying dielectric properties. The inclusion of pressure in the model allows the physical phenomena of “water pumping”, often observed in microwave drying systems, to be accounted for. The influence of sample size; on the drying kinetics 1s examined and found to be an important parameter during the drying process. In particular the effect of resonance on the moisture and temperature profiles and the need for careful consideration of surface mass transfer coefficients are investigated. Simulation results are presented for the combined microwave and convective drying of a homogeneous, isotropic porous material.  相似文献   

5.
A model is formulated to describe the drying of a slab of porous material in a combined microwave and convective environment. The model describes the evolution of temperature, pressure, moisture and power distributions that occur during the drying process. The microwave internal heat source is calculated from electromagnetic theory with varying dielectric properties. The inclusion of pressure in the model allows the physical phenomena of “water pumping”, often observed in microwave drying systems, to be accounted for. The influence of sample size; on the drying kinetics 1s examined and found to be an important parameter during the drying process. In particular the effect of resonance on the moisture and temperature profiles and the need for careful consideration of surface mass transfer coefficients are investigated. Simulation results are presented for the combined microwave and convective drying of a homogeneous, isotropic porous material.  相似文献   

6.
ABSTRACT

Drying related properties of apple are evaluated for various different drying methods (namely, convective, vacuum, microwave, osmotic and freeze drying), and their corresponding process conditions. The examined properties are drying kinetics, equilibrium material moisture content, density, porosity, color and viscoelastic characteristics. The effect of various process factors on these properties is described through particular mathematical models. The model parameters are estimated by fitting the corresponding model equations on a wide range of experimental data. Drying kinetics is greatly affected by the characteristic particle size and drying air temperature for convective drying, while for the case of microwave drying they are affected by the vacuum pressure and the emitted radiation power. Equilibrium material moisture content is affected by the temperature and the humidity of the surrounding air, while the osmotic pretreatment shifts the sorption isotherms to higher water activity levels. The quality properties examined, are significantly affected by the drying method. More specifically, osmotic dehydration decreases the porosity of the final product, while it prevents color deterioration and enchances the viscous nature of dehydrated apple. Freeze-dried apples develop the highest porosity, have the most elastic structure and the lowest rate of color deterioration.  相似文献   

7.
Drying related properties of apple are evaluated for various different drying methods (namely, convective, vacuum, microwave, osmotic and freeze drying), and their corresponding process conditions. The examined properties are drying kinetics, equilibrium material moisture content, density, porosity, color and viscoelastic characteristics. The effect of various process factors on these properties is described through particular mathematical models. The model parameters are estimated by fitting the corresponding model equations on a wide range of experimental data. Drying kinetics is greatly affected by the characteristic particle size and drying air temperature for convective drying, while for the case of microwave drying they are affected by the vacuum pressure and the emitted radiation power. Equilibrium material moisture content is affected by the temperature and the humidity of the surrounding air, while the osmotic pretreatment shifts the sorption isotherms to higher water activity levels. The quality properties examined, are significantly affected by the drying method. More specifically, osmotic dehydration decreases the porosity of the final product, while it prevents color deterioration and enchances the viscous nature of dehydrated apple. Freeze-dried apples develop the highest porosity, have the most elastic structure and the lowest rate of color deterioration.  相似文献   

8.
Drying kinetics of convective, vacuum, and microwave drying of a pharmaceutical product, chlorpropamide, has been investigated on a laboratory scale, in the temperature interval from 40°C to 60°C, and the range of microwave heating power from 154 W/kgdm to 385 W/kgdm.

The experimental data obtained were approximated with the “thin-layer” equation and a two parameter exponential model. In order to compare convective, vacuum, and microwave drying, effective diffusion coefficients and specific heat consumption were calculated for each drying method.

Higher rates and shorter drying times were achieved at a higher temperature and microwave heating power. The highest drying rates and the lowest specific heat consumption were achieved with microwave drying. This leads to the conclusion that microwave heating is the most appropriate method for drying of chlorpropamide. The quality of product was not changed for all applied methods.  相似文献   

9.
SORPTION DRYING OF SOYBEAN SEEDS WITH SILICAL GEL   总被引:2,自引:0,他引:2  
Seeds with high moisture content are easily attacked and damaged by microorganisms. It is important to reduce the moisture content to a safe level for storage. Soybean seeds, directly mixed with silica gel in different mass ratios, were dried in static beds at different environmental temperatures. The drying kinetics were compared and analyzed. A diffusion-type model was used to simulate the sorption drying process with success. Simple relations have been developed for sorption isotherms of both soybean and silica gel. A mass diffusivity equation for soybean drying was supplied in Arrhenius type.  相似文献   

10.
The effect of microwave drying on moisture content, moisture ratio, drying rate, drying time, and effective moisture diffusivity of celery leaves (Apium graveolens) was investigated. By increasing the microwave output power from 180 to 900 W the drying time decreased from 34 to 8 min; by increasing the sample amount from 25 to 100 g, the drying time increased from 25 to 49 min. To determine the kinetic parameters, the drying data were fitted to various models based on the ratios of the differences between the initial and final moisture contents and equilibrium moisture content versus drying time. Among the models proposed, the semi-empirical Midilli et al. model gave a better fit for all drying conditions applied. The activation energy was calculated using an exponential expression based on the Arrhenius equation. The relationship between the drying rate constant and effective moisture diffusivity was also estimated and gave a linear relationship.  相似文献   

11.
ABSTRACT

The influence of microwave power (0 to 8.0 W/g, dry basis) and hot air temperature (25°C to 95 °C) on drying rate and product temperature of diced apples (from 31 % to 5% moisture content, dry basis) in a laboratory microwave and spouted-bed combined dryer was investigated. Product temperature initially increased sharply to a plateau about 12 to 15°C above the spouted bed air temperature at a microwave input power 6.4 W/g. This temperature remained almost constant thereafter. Uniform microwave heating was achieved as evidenced by uniform product color and product temperature. Drying rates increased with increasing spouted-bed air temperature or microwave power level, But higher microwave power caused more darkening of the product. Drying of the diced apples in the microwave and spouted bed drying system exhibited two falling rates periods. The influence of air temperature on effective moisture diffusivity followed an Arrhenius type equation. The activation energies were 23.7 kJ/mol and 26.7 kJ/mol for the first and second falling rate periods, respectively.  相似文献   

12.
The influence of microwave power (0 to 8.0 W/g, dry basis) and hot air temperature (25°C to 95 °C) on drying rate and product temperature of diced apples (from 31 % to 5% moisture content, dry basis) in a laboratory microwave and spouted-bed combined dryer was investigated. Product temperature initially increased sharply to a plateau about 12 to 15°C above the spouted bed air temperature at a microwave input power 6.4 W/g. This temperature remained almost constant thereafter. Uniform microwave heating was achieved as evidenced by uniform product color and product temperature. Drying rates increased with increasing spouted-bed air temperature or microwave power level, But higher microwave power caused more darkening of the product. Drying of the diced apples in the microwave and spouted bed drying system exhibited two falling rates periods. The influence of air temperature on effective moisture diffusivity followed an Arrhenius type equation. The activation energies were 23.7 kJ/mol and 26.7 kJ/mol for the first and second falling rate periods, respectively.  相似文献   

13.
M. Hemis  C. B. Singh 《Drying Technology》2013,31(10):1240-1247
Drying characteristics of Canada Western Red Spring (CWRS) wheat were studied using a domestic microwave convective oven. The effects of microwave power level, grain bed thickness, and initial grain moisture on the drying kinetics were investigated. Wheat samples with initial moisture levels of 0.18 to 0.29 kg water/kg of dry matter were dried for different drying periods of 180 to 360 s. The moisture loss data were recorded at regular short intervals. Then moisture loss data were fitted to various models (Page equation, modified drying equation, and Midilli equation) to study the drying kinetics of wheat. The results showed that wheat moisture loss increased with increasing microwave power level. A mathematical model was developed by coupling mass and energy balances, resulting in a system of non-linear equations. The predicted moisture loss data from the developed model were compared by fitting to experimental microwave data that were in good agreement.  相似文献   

14.
ABSTRACT

For through drying there are three distinct drying rate periods, increasing rate, constant rate and falling rate. The increasing rate period is so important that nearly half of the drying is completed in this period only. A drying rate - moisture content relationship for this period was obtained based on theoretical analysis. It was verified with experimental data. A quantitative representation of the complete drying rate curve was established using this relationship and a modified power law equation for the falling rate period drying rate - moisture content relation. It needs five parameters to quantify the through drying from wet to dry: moisture content at the end of the increasing rate period; exponent for the drying rate - moisture relationship during the increasing rate period; constant drying rate; critical moisture content and the power-law exponent for the falling rate period.  相似文献   

15.
ABSTRACT

Strawberries pretreated with 2% ethyl oleate and 0.5% NaOH were osmotically dehydrated and their osmotic dehydration rate is compared with untreated berries. It was found that treated berries dehydrated belter compared to untreated berries. Osmotically dehydrated berries were convective and microwave dried at different power levels and results were compared with respect to drying time and rate. The rehydration ratio, texture, color and sensory values are compared with freeze dried strawberries with the same pretreatment. It was found that microwave drying was short in time and the quality parameters of the microwave dried berries were comparable to those of freeze dried berries.  相似文献   

16.
ABSTRACT

Microwave vacuum drying kinetics of three fruits (namely, apple, kiwi and pear) were studied by introducing an one-parameter empirical mass transfer model, involving a characteristic parameter (drying constant), as a function of process variables. The model was tested with data produced in a microwave oven equipped with vacuum apparatus, using non-linear regression analysis. The investigation involved a wide range of microwave power and vacuum pressure levels. The parameters of the model considered were found to be greatly affected by the microwave power level while vacuum pressure affected slightly the process.  相似文献   

17.
Drying behavior of thin slabs of plaster of paris was investigated in microwave, convective and microwave assisted convective drier. The process parameters involved in the study include the microwave output power, air temperature used for drying, the initial moisture content of the sample, thickness and geometry of the sample. A typical drying profile, with no constant rate period followed by a falling rate period was obtained for all the three methodologies used. The mechanism of moisture movement within the sample during the falling period, as expressed by effective moisture diffusivity, was between 1.166 × 10−8 and 2.6927 × 10−8 (m2 s−1) for the least microwave output power of 180 W. The specific energy consumption and the drying efficiency involved in the microwave process, estimated from the energy supplied to the drier and the total time was found to be 0.4557 MJ kg−1 and 82.56% for a sample thickness of 0.013 m. The microstructure of the fractured surfaces and qualitative phase analysis of microwave activated plaster of paris were extensively investigated by Scanning Electron Microscopy, Fourier Transform Infra-Red spectroscopy and X-Ray Diffraction techniques. The experimental moisture loss data with time was fitted to nine semiempirical thin layer equations. The suitability of the models was validated by comparing it with the predicted moisture ratio for any given set of operating conditions. The statistical analyses of the available literature correlations, for their applicability to the data of the present study showed greater deviation attributing their restricted range of applicability of individual correlations. As a result, a third order polynomial equation was developed from this study.  相似文献   

18.
Strawberries pretreated with 2% ethyl oleate and 0.5% NaOH were osmotically dehydrated and their osmotic dehydration rate is compared with untreated berries. It was found that treated berries dehydrated belter compared to untreated berries. Osmotically dehydrated berries were convective and microwave dried at different power levels and results were compared with respect to drying time and rate. The rehydration ratio, texture, color and sensory values are compared with freeze dried strawberries with the same pretreatment. It was found that microwave drying was short in time and the quality parameters of the microwave dried berries were comparable to those of freeze dried berries.  相似文献   

19.
L. Lu  J. Tang  X. Ran 《Drying Technology》1999,17(3):414-431
Microwave drying characteristics of sliced foods were investigated using potatoes (Solarium tuberosum) as a test model. Sliced samples were dried to 7-10% moisture content at microwave power levels between 2.2 W/g and 3.6 W/g (raw material). Moisture and temperature changes during drying were monitored. Semi-empirical models were developed that followed temperature and moisture changes during microwave drying. Sliced potatoes experienced three distinct periods: a warming-up period with little removal of moisture; a constant temperature period in which most of the drying took place; and a heating up period in which the drying rate decreased and sample temperature increased rapidly, often causing partial charring. Product temperature during the second period of microwave drying increased with sample thickness and microwave power. Drying rates were not affected by slice thickness, but increased with the microwave power/mass ratio. Product charring towards the end of drying may be avoided by reducing microwave power and increasing ambient air velocity.  相似文献   

20.
L. Lu  J. Tang  X. Ran 《Drying Technology》2013,31(3):414-431
ABSTRACT

Microwave drying characteristics of sliced foods were investigated using potatoes (Solarium tuberosum) as a test model. Sliced samples were dried to 7-10% moisture content at microwave power levels between 2.2 W/g and 3.6 W/g (raw material). Moisture and temperature changes during drying were monitored. Semi-empirical models were developed that followed temperature and moisture changes during microwave drying. Sliced potatoes experienced three distinct periods: a warming-up period with little removal of moisture; a constant temperature period in which most of the drying took place; and a heating up period in which the drying rate decreased and sample temperature increased rapidly, often causing partial charring. Product temperature during the second period of microwave drying increased with sample thickness and microwave power. Drying rates were not affected by slice thickness, but increased with the microwave power/mass ratio. Product charring towards the end of drying may be avoided by reducing microwave power and increasing ambient air velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号