首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 99 毫秒
1.
以(NH_4)_6Mo_7O_(24)和Ni(NO_3)_2为原料,以NaBH_4作为还原剂采用常规方法和超声波法制备出非晶态Ni-Mo-B催化剂,用BET、SEM、XRD和FT-IR对所制备的催化剂进行表征.XRD结果表明,所制备的催化剂均为非晶态结构,超声波的引入抑制了硼氧化物的生成,提高了非晶态的无序性.SEM显示,引入超声波,催化剂粒径变小,催化剂的团聚现象减少,比表面积增大.以苯酚为模型化合物研究催化剂的加氢脱氧性能,其中超声波条件下制备的催化剂表现出优良的加氢脱氧活性,在498 K时,苯酚的转化率达81.08%,脱氧选择性达93.39%.  相似文献   

2.
催化剂新材料非晶态合金的制备及加氢性能   总被引:3,自引:0,他引:3  
刘红  卢冠忠  胡宏玖 《化学世界》2003,44(7):383-387
介绍了非晶态合金的制备方法、表征手段以及非晶态合金催化剂在各类加氢反应中的性能。  相似文献   

3.
简述了国内油脂加氢催化剂的现状,介绍了化学还原法制备非晶态合金催化剂,及其在油脂加氢反应中的应用研究,指出了非晶态合金催化剂应用于油脂加氢反应的研究趋势.  相似文献   

4.
孙昱  李斌栋  吕春绪  吴秋洁 《精细化工》2006,23(11):1071-1074
采用水合肼和硼氢化钾为共还原剂,适当比例的甲醇、乙醇和水的混合物为溶剂,在333 K下制得负载催化剂P1。XRD、TEM、SAED测定结果表明,该催化剂是一种纳米级非晶态合金。将P1催化剂用于邻氯硝基苯加氢反应,在底物100%转化时,生成邻氯苯胺的选择性达到94.3%。对一系列氯代硝基芳烃化合物在P1催化剂上的催化加氢反应进行了考察,得出脱氯顺序依次为:2-氯-5-硝基甲苯>邻氯硝基苯>间氯硝基苯=对氯硝基苯>2,5-二氯硝基苯,分析了不同氯代硝基苯的结构与脱氯的关系,认为在该催化剂上脱氯的主要原因,是生成的氯代苯胺在催化剂表面的吸附。讨论了金属添加剂(Cr、Mn、Fe、Co、Cu、Mo、Zn、La)对P1催化剂催化加氢制备邻氯苯胺的影响,发现添加Cu、Fe能提高催化剂的选择性,在底物基本转化时,选择性由不加金属添加剂时的94.3%,分别提高到97.2%和97.6%。  相似文献   

5.
非晶态合金催化剂对不饱和化合物加氢研究进展   总被引:9,自引:0,他引:9  
唐忠 《化工进展》2001,20(2):24-26,30
介绍了非晶态合金的制备方法与表征手段,分析了非晶态合金用作新型催化材料的可能性。对负载型非晶态合金催化剂用于含不饱和基团化合物的加氢性能作了较为详细的阐述。  相似文献   

6.
以拟薄水铝石、丝光沸石为原料制备载体,采用浸渍-化学还原法制备了负载型Ni-Pt-B非晶态合金催化剂,并对催化剂进行XRD、BET和H2-TPR表征。以苯加氢制环己烷反应为探针,考察Pt、还原物溶剂碱浓度、浸渍顺序等因素对催化剂加氢活性的影响。结果表明,以H2PtCl6·6H2O为原料添加的微量Pt能促进NiO的还原,并显著提高催化剂苯加氢活性;还原物溶剂为蒸馏水,采用Ni、Pt共浸渍并干燥后还原的方法制备的催化剂活性最好。在反应压力0.5MPa、氢苯摩尔比4∶1,质量空速1.0h-1的条件下,反应温度高于120℃时,环己烷产率达到100%。  相似文献   

7.
Ni-B/SiO2非晶态合金催化加氢制备邻氯苯胺   总被引:3,自引:0,他引:3  
以水合肼和硼氢化钾为共还原剂制备了Ni-B/SiO2非晶态合金催化剂,并将其应用于邻氯硝基苯的催化加氢反应,较佳的制备条件是:温度=60℃,氢氧化钠0.1 g,水合肼3ml。使用该催化剂可使邻硝基氯苯的转化率达到100%,选择性达到98.20%,通过X衍射(XRD)和透射电镜观察(TEM)分析可知:该催化剂是一种纳米级非晶态合金。  相似文献   

8.
Co对非晶态催化剂Ni-Mo-B加氢脱氧性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
以NaBH4作为还原剂,采用化学还原法制备出Ni-Mo-B或含助剂Co的Ni-Mo-B非晶态催化剂,用BET、SEM、XRD、XPS和DSC对催化剂进行表征分析,以苯酚为模型化合物研究其加氢脱氧性能。结果表明,所制备的催化剂为非晶态结构,助剂Co的加入,使催化剂粒径变小,促进Ni和B之间的电子转移,提高热稳定性。在苯酚的加氢脱氧活性研究中,加入助剂Co后,Ni-Mo-B显示出高加氢脱氧活性。在523 K、氢压4.0 MPa时,苯酚转化率达98%,加氢脱氧选择性达93%,产物中芳烃含量仅为2.92%,低于欧洲生物质油精制标准(14%)。随着温度的升高,加氢脱氧选择性进一步提高,但是在高温下,催化剂的非晶态结构不稳定,表现为转化率的下降和中间产物含量的增加。  相似文献   

9.
负载型非晶态合金的结构及催化加氢性能   总被引:5,自引:1,他引:5  
梁薇 《工业催化》2005,13(9):56-60
采用还原法制备了负载型Ni-B、Ni-P体系非晶态合金催化剂,对其结构进行了物化表征。该方法制备的非晶态合金克服了以往制备方法的非晶态合金比表面积小、热稳定性差的缺点。以甲苯、苯乙烯、苯乙炔、硝基苯、环己酮和己二腈为模型化合物,研究了负载型非晶态合金的催化加氢反应性能,并与多晶Ni催化剂进行对比。结果表明,非晶态合金具有更优越的催化加氢性能,并有可能作为含不同不饱和基团化合物的选择加氢催化剂。  相似文献   

10.
非晶态合金催化剂用于葡萄糖加氢制山梨醇的研究   总被引:17,自引:4,他引:17  
采用石油化工科学院研制的非晶态合金催化剂进行葡萄糖加氢,考察了温度、压力、pH 值、剂糖比和反应时间等因素对加氢反应的影响,并与其它Raney Ni 类催化剂进行了对比。结果表明,使用SRNA-3 非晶态合金催化剂进行葡萄糖加氢,当反应温度为130 ~140℃、压力为5 ~9MPa、pH值为8.35、剂糖质量比为1% 、反应时间为70~120min 时,转化率可达100% ,产品色度好。SRNA-3 催化剂的葡萄糖加氢活性好于Raney Ni 催化剂,重复使用时,也可保持较高活性。  相似文献   

11.
利用团簇Co3PB模型来研究非晶态合金Co-P-B体系,从能量学视角对团簇Co3PB中五种稳定构型所占比例进行定量分析后,可知共有四种主要存在构型,按构型稳定性排序后,二、四重态构型随能量的升高呈交替排列样式。Co原子是催化反应的活性质点,此结论与实验结果相同。结合态密度图分析,在催化反应中,团簇Co3PB易接受反应物的电子,使反应物活化。  相似文献   

12.
采用原子簇方法,对倍受关注的Fe基非晶态合金Fe-B-P的催化活性和磁性进行研究.通过合理设计可调Fe含量的系列原子簇FenBP(n=1~4)可能构型三十余种,利用密度泛函理论(DFT)分别在单、三重态下进行优化计算.在不同多重度下,对所确定的原子簇FenBP(n=1~4)最稳定构型的几何结构、能量、能隙差、费米能级和d轨道布局数进行分析,结果表明:多重度对原子簇FenBP(n=1~4)几何构型影响较大;三重态比单重态稳定且催化加氢活性较好,其中三重态的Fe3BP活性最好;单重态的磁矩明显低于三重态,其中单重态的Fe4BP磁矩最小,表现出软磁性.  相似文献   

13.
用Raney-Ni为催化剂,CEN为助催化剂,甲醇为溶剂,对2,5-二氯硝基苯进行催化加氢还原,制备了2,5-二氯苯胺。研究了温度、氢气压力及助催化剂等各种工艺条件对反应的影响,并对催化剂进行了套用实验。结果表明,在较佳条件下反应,制得产品收率可达96%,纯度可达99%,催化剂可套用17次以上。  相似文献   

14.
以对硝基苯胺为原料,乙醇为溶剂,采用骨架镍作催化剂,液相催化加氢制备对苯二胺。该工艺路线可行,最佳反应条件为温度90~110℃,压力1.5~2.0MPa,在最佳条件下产品收率大于90.0%,产品含量大于99.0%。  相似文献   

15.
于万朋  刘江宁 《河北化工》2009,32(12):26-27
用雷尼镍为催化剂、吗啉为脱氯抑制剂、甲醇为溶剂,对4-氯硝基苯进行催化加氢,制备了4-氯苯胺。考察了温度、氢气压力及脱氯抑制剂等各种工艺条件对反应的影响,并对催化剂进行了套用实验。结果表明,在优化的反应条件下,4-氯苯胺选择性可达99.6%,催化剂可套用10次以上。  相似文献   

16.
代丽  刘黎明 《广东化工》2013,40(11):10-12,2
采用深共晶法对非晶合金Ni-Nd-B的配方进行设计,设计后的非晶合金配方将具有较高的非晶形成能力。利用铜模吸铸方法得到尺寸为Φ6 mm×30 mm的Ni-Nd-B非晶棒材,并采用XRD、DTA、SEM对非晶棒材进行表征。结果发现,此材料的约化玻璃转变温度Trg为0.56,这表明通过设计的合金材料有很高的非晶形成能力。在Ni-Nd-B材料中Ni、Nd成分的微量变化,将导致合金趋向于形成三元结晶相,这主要是由于深度共晶配料引起的。  相似文献   

17.
非晶态NiMoAl合金催化葡萄糖加氢制备山梨醇   总被引:2,自引:1,他引:2  
杜文强  王越  吕连海 《精细化工》2007,24(12):1204-1206
研究了非晶态NiMoAl在葡萄糖加氢制备山梨醇反应中的催化性能,考察了反应温度、压力和催化剂用量对反应的影响,并与5种钼改性骨架镍催化剂作了活性比较。结果表明,采用质量分数50%的葡萄糖水溶液,非晶态NiMoAl为催化剂,在温度135℃,压力4.0MPa下,原料100%转化,山梨醇选择性大于99%,催化剂连续套用5次,活性保持不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号