首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, hard coatings (TiN, TiCN, CrN, and CrCN) and Me-DLC coatings (Ti x%-C:H and Cr x%-C:H) were deposited on tungsten carbide (WC) substrate by multiarc physical vapor deposition (MAPVD) and unbalanced magnetron (UBM) sputtering, respectively. Counterbodies of the AISI 1045 steel cylinder and the AA7075T651 aluminum cylinder were used in the cylinder-on-disk, line-contact wear mode under dry condition; a counterbody of the AISI 52100 steel ball was used in the ball-on-disk, point-contact wear mode, under both dry and lubricated conditions. All wear tests were conducted with a reciprocating machine. After the tests, the most suitable coating for various counterbodies and test environments was selected. For the coating/1045 steel cylinder, the Ti10%-C:H coating possesses excellent tribological characteristics. For the coating/7075T651 aluminum cylinder, hard coatings display excellent wear resistance. For the coating/steel ball, CrCN and CrN coatings display very little wear under both dry and lubricated conditions. On TiN and TiCN coatings, special wear mechanisms of material transfer, adhesion wear, and fatigue fracture occurred during initial tests under kerosene lubrication.  相似文献   

2.
Ni-W-GO composite coatings were successfully plated on 45# steel substrate by co-electrodeposition technique in a Ni-W electrolyte solution,with different contents of graphene oxide(GO)nanoparticles in suspension.The structure,phase composition and surface morphology of as-plated composite coatings were characterized by Raman,X-ray diffraction(XRD),scanning electron microscopy(SEM)attached with energy disperse spectroscopy(EDS),respectively.The hardness and tribological behavior of the present coatings were also evaluated by Vickers Hardness tester and high-speed reciprocating friction and wear tester,and the wear mechanism was discussed as well.The results show that layer-structured GO nanoparticles significantly affect the microstructure and grain size of the Ni-W-GO composite coatings.Meanwhile,GO nanoparticles embedded in NiW-GO coatings can obviously improve the hardness and wear resistance in comparison with the corresponding NiW coatings.The highest microhardness and wear resistance of Ni-W-GO composite coatings are obtained with 0.15 g·L~(-1)GO employing.  相似文献   

3.
Electroplated hard chromium and thermal spray hardmetal coatings are widely used in a variety of applications for wear protection of component surfaces. The two protective coating types are tested in direct comparison for tribological conditions of dry abrasive wear (Taber Abraser test) and dry oscillating wear load. Oscillating wear tests are carried out both with hardened 100Cr6 steel and alumina balls as counterbody. Different types of hardmetal coatings are imparted. Besides HVOF sprayed coatings also coatings sprayed by an APS gun with axial powder feed are tested. For HVOF spraying besides standard WC/Co(Cr) feedstock also coarse (d50 = 5 μm) and fine carbide feedstock (d50 = 0.8 μm) and ultrafine powders, i.e. 2 μm < d < 12 μm, are considered. Use of ultrafine powders is particularly interesting from the economical point of view, as belt grinding can be sufficient for finishing in many cases. The optimum coating solution for wear protection depends on the specific tribosystem. The choice of feedstock, spraying process, equipment and processing conditions does not only depend on the resultant tribological properties. Therefore simultaneous influence on corrosion protection capability and thermal conductivity might have to be considered.  相似文献   

4.
The amorphous chromium-alumina (a-Cr-Al2O3) composite coatings with thickness of 50 μm were electrodeposited from Cr(III) electrolytes containing Al2O3 particles and Al3+. The effects of Al3+ on the dispersibility and Zeta potential of Al2O3 particles in electrotyles were investigated. It was found that the Al3+ promotes the Al2O3 particles to uniformly disperse in the Cr coatings. Tribological behavior of a-Cr-Al2O3 composite coatings was studied as compared with amorphous chromium (a-Cr) coatings electrodeposited from single Cr(III) electrolytes. The results demonstrate that the introduction of Al2O3 particles significantly improves the tribological performance of a-Cr coatings.  相似文献   

5.
Ni-P-多壁碳纳米管复合镀层的制备及摩擦磨损性能(英文)   总被引:1,自引:0,他引:1  
采用湿式球磨对多壁碳纳米管(MWNTs)预处理,通过化学镀制备Ni-P-MWNTs复合镀层;对45钢、传统Ni-P镀层和Ni-P-MWNTs复合镀层在干摩擦条件下的摩擦磨损性能进行考察和比较。结果表明,球磨后MWNTs长径比降低,长度均匀,且多数端部处于敞开状态。与45钢和Ni-P镀层相比,Ni-P-MWNTs复合镀层的减摩耐磨能力显著强化。当复合镀层中MWNTs的质量分数为0.74%~1.97%时,其摩擦因数和磨损率随MWNTs含量的增加而减少;对于MWNTs质量分数为1.97%的复合镀层,其摩擦因数和磨损率仅为0.08和6.22×10?15m3/(N·m)。复合镀层优良的摩擦磨损性能归因于MWNTs优异的力学性能和自润滑特性。  相似文献   

6.
Cr含量对掺铬类石墨镀层摩擦学性能的影响   总被引:1,自引:0,他引:1  
采用4靶非平衡磁控溅射离子镀技术,在高速钢和硅基体上制备出不同Cr含量的掺铬类石墨镀层,研究了类石墨镀层的显微硬度、摩擦系数和比磨损率,分析了Cr含量对镀层的表面、断面形貌及微观结构的影响.结果表明,随Cr含量的增加,类石墨镀层硬度逐渐降低;摩擦系数和比磨损率先降后升;镀层由非晶逐步变成有择优生长趋势的纳米晶与非晶混合多层结构.当Cr含量在2wt%~10wt%时,镀层表面光滑而结构致密,镀层C、Cr成分均匀分布,硬度为19.8~21.4 GPa,最小的摩擦系数为0.045和最低比磨损率1.32×10-16m3/N·m,具有良好的减摩耐磨性能.  相似文献   

7.
Chromium carbide/nickel chromium coatings obtained by the high- velocity oxyfuel thermal spray proc-ess were characterized using conventional and high- resolution microscopy to identify the complex micro-structure that results from this thermal spraying technique. Thermal cycling and long isothermal treatment were studied, as were the adhesion properties of as- coated and thermally treated samples.  相似文献   

8.
采用光纤激光在硬质合金表面进行了激光微织构工艺(不同微凹坑直径、深度及织构密度),利用PVD法对微织构后的硬质合金表面进行TiAlN涂层沉积。在不同速度下(0.02m/s和0.04m/s)进行了摩擦磨损实验,对比分析了不同织构的摩擦系数,利用扫描电镜研究了表面磨损形貌,电子天平测量磨损量,并进行了磨损机理分析。结果表明,基体微织构后涂层表面的摩擦系数比基体无织构的摩擦系数稳定,微织构直径对基体涂层的摩擦磨损性能影响较大。基体微织构后的涂层具有较好的减摩效果。  相似文献   

9.
ABSTRACT

The traditional importance of hard chromium electroplating in surface engineering is recognised and the key features of this well-established technology are summarised. Despite the high hardness, corrosion protection and wear resistance of chromium electrodeposits, a number of alternative coating compositions and application techniques have been developed for specific applications in tribology. Environmental challenges associated with hard chromium electroplating are highlighted and the need to develop and evaluate alternative coatings is stressed. Key examples of the alternative coatings are described, including their method of application, microstructure and tribological performance in controlled service environments. Research needs requiring rapid development are highlighted. A summary is given of the most competitive coatings and those having the potential to match the performance of hard chromium in selected applications are identified.  相似文献   

10.
采用电火花沉积分别制备了碳化铬基金属陶瓷单涂层和碳化铬基金属陶瓷/Ni复合涂层。采用X射线衍射仪(XRD)、扫描电镜(SEM)、显微硬度计和摩擦磨损试验机对比研究了单涂层和复合涂层的物相、微观组织结构、显微硬度和摩擦磨损性能。结果表明,两种涂层组织结构致密,与基体呈良好的冶金结合,并在涂层内形成了纳米晶的微观组织。复合涂层中FeCr0.29Ni0.16C0.06韧性相含量增加,在涂层界面处存在过渡层Ni,并以塑性变形的方式释放了更多沉积时产生的热应力,因而涂层裂纹明显减少。复合涂层的峰值硬度(1186HV0.05)虽略低于单涂层,但该涂层具有最小的摩擦系数(0.2462),1h磨损量仅为单涂层的1/3,因此表现出更好的耐磨性能,其主要磨损机制为磨粒磨损和疲劳磨损。  相似文献   

11.
ABSTRACT

In the current study, WC-Co and Cr3C2-NiCr coatings deposited on 90MnCrV8 steel surface via an atmospheric plasma spray (APS) system were modified by the plasma transferred arc (PTA) welding method. Microstructural defects including micro-cracks, voids, pores, and non-uniform zones were determined in the APS deposited layers. The microstructural defects were terminated by the PTA melting process due to the dissolving pool at high temperature. Strong metallurgical bonding between the coating layer and substrate and columnar dendrites and inter-dendritic precipitates were observed during the PTA melting process. Following the PTA melting process, MC, M3C, and M7C3 hard phases were formed in the coating layers. The hardness and wear performance of the coating layers significantly increased due to the PTA surface modification. The main reason for the significant increases in wear performance corresponded to the newly formed hard carbide phases and elimination of microstructural defects via the PTA surface modification.  相似文献   

12.
The corrosion and nanomechanical characteristics of tool steel coated with vanadium carbide thin films deposited by DC reactive magnetron sputtering were investigated. Cyclic polarization and electrochemical impedance spectroscopy measurements in a 3.5% sodium chloride solution indicated that corrosion decreases as the C content and the substrate temperature during deposition increase. The maximum hardness is reached for VC coatings with C/V ratios around unity, decreasing for either higher or lower C/V ratios. Complementary physicochemical analyses, made here or elsewhere, are used to clarify the reasons for such behavior. The present results are discussed in terms of the optimization of the deposition parameters aiming at concomitantly good corrosion resistance and high hardness.  相似文献   

13.
A Ni-Al-Cr3C2 welding wire was produced by metal-powder-core technique. When the welding wires were welded on the surface of carbon steel, under the effect of the physical heat of arc, Ni reacted with Al to form Ni3Al and carbide particles reinforced Ni3Al matrix composite was formed. Cr3C2 was decomposed during welding and dispersed Cr7C3 with stripe shape formed, which strengthened the matrix significantly. The Cr7C3-Ni3Al interface has broadened into a zone of interdiffusion and a new phase M23C6, which indicates that a good bond has been formed. The pin-abrasion wear test showed that the abrasion resistance of Cr7C3/Ni3Al composite is six times higher than that of Stellite12 alloy at room temperature. The good wear resistance of Cr7C3/Ni3Al composite coating can be attributed to large volume fraction of carbides, high hardness, and good phases interface bond.  相似文献   

14.
Conclusion The optimal combination of properties of the R6M5K5 steel is achieved with the formation on this steel of ion-plasma coatings based on the three-component vanadium and chromium nitrides (V,Cr)N+(V,Cr)2N. This coating increases the tool wear resistance and heat resistance by a factor of 2.5–3.Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 8–10, September, 1993.  相似文献   

15.
In order to improve the corrosion and tribological properties of steel, chromium oxide coatings were prepared by a new combined process, namely, chromizing and plasma oxidizing treatments using double glow plasma technology under various oxygen flow rates. The composition and microstructure of the coatings were analyzed respectively by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results indicated that the oxygen flow rates had a great effect on the surface structure of the prepared Cr2O3 coatings, and dense and smooth Cr2O3 coatings were prepared at the oxygen flow rate of 10 sccm. The Cr2O3 coatings exhibited the better corrosion resistance which was in good agreement with the results obtained by the microstructure studied. Further mechanical properties test showed that the Cr2O3 coatings with high hardness and elastic modulus adhered well to the steel substrates and displayed excellent wear resistance and low coefficient of friction under dry sliding wear test conditions. The wear mechanism was mostly dominated by the “soft abrasion”.  相似文献   

16.
17.
Using Ni/Cr/graphite powder blends as raw powders,a Ni matrix composite coating reinforced by in-situ carbide,was fabricated on the surface of Q235 by means of laser cladding. These microstructure and properties were discussed. The result of phase analysis( XRD) and microstructure investigation( SEM) showed that the coatings consist mainly of Cr_3 C_2,Cr_7 C_3 and γ-( Ni,Cr),which are consistent with the thermodynamic calculations. The wear morphology of the coatings was also examined. The results of dry sliding wear tests of different Cr/C ratio show that the wear resistances of the Cr_3 C_2-reinforced coating,respectively,are 13. 4,9. 5,9. 1 and 6. 5 times higher than that of the substrate and the main wear mechanisms of the coatings are adhesion and abrasive wear with slight oxidation.  相似文献   

18.
Thin film hard coatings on rolling element surfaces can enhance the overall wear resistance of rolling element bearings, as demonstrated previously for coated tapered, cylindrical, and spherical roller bearings. Hard coatings in ball bearings are less common because of the difficulty in achieving uniform film thickness on a ball surface. This limitation is overcome by a new process for depositing chromium nitride coatings with uniform thickness on precision balls using ion beam assisted deposition (IBAD) e-beam evaporation. Scanning electron microscopy indicated that the deposited films were smooth and conformal on the ball surfaces with no areas of localized delamination. Auger electron spectroscopy confirmed that Cr2N and CrN bulk film stoichiometry was achievable by modulating the argon to nitrogen process gas ratio during deposition. Transmission electron microscopy revealed dense, polycrystalline film structure. Film hardness and elastic modulus as measured using nanoindentation on the coated balls met expectations for chromium nitride, and tribological testing of the coated balls in angular contact ball bearings under moderate contact stress levels demonstrated adequate film adhesion for practical use of these coatings in bearing applications.  相似文献   

19.
钒对铁基碳化钨耐磨堆焊层组织和性能的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
魏炜  黄智泉  张海燕  杨威 《焊接学报》2019,40(6):131-136
在自研制的碳化钨管状药芯焊条中添加不同含量的钒元素(0%~3%)并制备堆焊合金,通过SEM,XRD,EDS等研究分析手段,研究不同钒含量对碳化钨耐磨层组织性能的影响规律.结果表明,钒含量与堆焊层中碳化钨颗粒的溶解程度密切相关,钒优先将碳化钨颗粒分解出的碳原子以碳化钒形式固定,从而抑制了碳化钨颗粒的分解,钒元素含量决定了碳化钨溶解的强弱,含有2%钒元素的堆焊层中生成适量碳化钒有效抑制了碳化钨的溶解.钒元素的加入还能强化碳化钨堆焊层基体金属的硬度,降低堆焊层中碳化钨颗粒剥落的风险,有效提高了堆焊层的耐磨性.  相似文献   

20.
采用光学显微镜、扫描电镜、电子探针及X射线衍射分析钨极氩弧堆焊碳化铬增强Ni3Al基复合堆焊层的组织结构,并采用销盘式干摩擦磨损试验机对堆焊层与活塞环用蠕墨铸铁材料的干摩擦磨损性能进行试验比较.结果表明,复合堆焊层内形成Ni3Al金属间化合物基体,其中弥散分布有大量细小的块状和条状碳化物硬质相Cr3C2和Cr7C3;焊接时焊丝中Cr3C2颗粒溶解析出,重新析出的碳化铬颗粒中包含Fe和Ni元素,碳化铬颗粒与Ni3Al基体形成良好的冶金结合;弥散分布的碳化铬颗粒和Ni3Al基体固溶强化的Cr元素决定了堆焊层具有较高的硬度.室温条件下,复合堆焊层具有优异的耐干摩擦磨损性能,其摩擦系数为0.23,远低于活塞环蠕墨铸铁的0.39;磨损率仅为蠕墨铸铁材料的43%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号