首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
吴建华  张海龙  张洋  李建伟  王西涛 《功能材料》2012,43(17):2295-2298,2303
通过盐浴镀方法实现金刚石表面镀Ti,并采用模压铸造方法制备镀Ti金刚石/Al复合材料。研究镀层对复合材料微观结构和热性能的影响。结果表明金刚石表面镀Ti改善了复合材料的界面结合,降低界面热阻,从而提高了复合材料的热性能,包括降低热膨胀系数,提高复合材料的热导率。采用850℃盐浴镀Ti,镀覆时间180min得到的镀Ti金刚石/Al复合材料热导率高达488W/(m.K),在温度范围50~300℃之间,其平均热膨胀系数为9×10-6/K。  相似文献   

2.
张晓宇  许旻  曹生珠 《材料导报》2018,32(3):443-452
界面结合良好的金刚石/铜复合材料具有优异的热物理性能。通过各种手段修饰金刚石-铜界面能够充分发挥金刚石/铜复合材料的高导热潜力。综述了制备金刚石/铜复合材料时主要的两类界面修饰方法:金刚石表面预镀碳化物形成元素和对铜基体预合金化,并对这两类修饰手段的制备工艺和导热机制进行了简单评述。探讨了金刚石/铜复合材料制备及界面修饰领域目前存在的问题及发展趋势。  相似文献   

3.
非晶态合金带增强聚合物基复合材料的研究   总被引:2,自引:0,他引:2  
刘强  李俊 《复合材料学报》1993,10(4):127-134
本文研究了超高强的非晶态合金带增强高性能聚合物的复合材料.通过对非晶态合金带进行合适的表面化学处理,可以提高其复合材料的粘结强度:同时本文应用复合材料的剪切强度来研究非晶态合金带增强复合材料的粘结性能.用扫描电镜(SEM)微观分析技术分析研究了经过表面处理前后的非晶态合金带增强的复合材料的表面和界面.  相似文献   

4.
刘世敏  韩丽  马瑞娜 《材料保护》2013,46(3):1-3,10,4
为了研究金刚石表面不同镀层对锯片刀头性能的影响及作用机理,分别对金刚石作了化学镀Ni、真空微蒸发镀Ti及Ti-Ni复合镀处理,并与铜基粉末混合烧结制备了锯片刀头。分别采用L30W/TMP扫描电镜、自制的3点抗弯机和热蚀法,对锯片刀头的锋利度、抗弯强度、耐热蚀性进行了探讨。结果表明:金刚石镀覆后制备的锯片切削性能、胎体对金刚石的把持力比金刚石锯片均有不同程度的提高;高温下,镀覆层对金刚石起到了一定的保护作用,镀Ni金刚石的锯片金刚石脱落较严重,镀Ti金刚石锯片的锋利度提高不大,Ti-Ni复合镀金刚石锯片切割速度最快,较前2种分别提高了67%和56%,且加工质量最好。金刚石表面Ti-Ni复合镀是提高铜基金刚石锯片性能的最有效措施之一。  相似文献   

5.
高阳  肖海波  刘咏  张伟 《复合材料学报》2023,40(2):1105-1117
金刚石超硬磨具在高端芯片加工、3C陶瓷等领域发挥的作用日益重要,粘结相与金刚石的界面结合情况在很大程度上影响了金刚石超硬复合材料的力学和磨损性能。为了研究粘结相和金刚石的界面结合情况,采用放电等离子烧结方法制备了Cu35Ni25Co25Cr15多主元合金/金刚石复合材料,通过热力学计算和实验研究了粘结相和金刚石颗粒的界面反应。结果表明:烧结过程中,金属粘结相中的Cr元素与金刚石在界面处发生了化学反应,生成Cr-C化合物,且Cr-C化合物层的厚度随着烧结温度的升高而增加。当烧结温度达到950℃时,Cr-C化合物反应层均匀连续,厚度大约为1.1μm。复合材料粘结相与金刚石颗粒的粘结系数随着Cr-C化合物层厚度的增加而增大。摩擦磨损测试表明,在900℃和950℃烧结的样品表面,粘结相在摩擦过程中首先被磨除,金刚石随后露出,而Cr-C界面反应层有助于保持对金刚石颗粒的把持能力,提高复合材料的磨削性能。因此,适当的界面反应可提升金刚石复合材料的服役性能。  相似文献   

6.
分别采用在Cu基体添加0. 1 wt%的Ti 元素形成Cu2Ti合金和在Diamond 颗粒表面镀钛(DiamondTi) 的方法, 制备了含Diamond 体积分数为60 %的Diamond/Cu2Ti 复合材料和DiamondTi/Cu 复合材料。对比分析了Ti 元素对复合材料微观组织、界面结合及性能的影响规律。结果表明: 添加0. 1 wt%Ti 元素能改善Diamond与Cu 的界面结合, 在界面处观察到明显的碳化物反应层; 且以Cu2Ti合金的方式添加Ti 元素改善界面的效果优于在Diamond 颗粒表面镀Ti 的方式。所制备的Diamond/Cu2Ti 复合材料的热导率为621 W(m·K) - 1, 而DiamondTi/Cu复合材料的热导率仅为403. 5 W(m·K) -1, 但均高于未添加Ti 制备的Diamond/Cu 复合材料。   相似文献   

7.
铸渗法制备铜基表面复合材料   总被引:14,自引:1,他引:13       下载免费PDF全文
利用铸渗法对铜合金表面进行改性, 用Fe 基合金粉末作为渗剂在负压条件下进行浇注制备铜基表面复合材料。实验结果表明: 在本实验工艺条件下, 在铜合金铸件的特定表面获得了致密的组织结构不同于基体的渗层———表面复合材料层。经SEM 观察, 发现渗剂颗粒与基体的界面结合良好, 证实了铸渗法制备铜基表面复合材料的可行性。  相似文献   

8.
金刚石表面的Ti、Mo、W镀层及界面反应对抗氧化性能的影响   总被引:12,自引:1,他引:11  
为了提高工业金刚石的抗氧化能力,本文用XRD、SEM、DTA和TGA等方法研究了Ti、Mo、W镀层与金刚石界面反应过程、结构特征及对金刚石抗氧化性能的影响.结果表明:Ti在高于600℃、Mo在高于650℃、W在高于650℃与金刚石界面发生固相反应,通过反应扩散过程在金刚石表面外延生长成相应的TiC、MoC+Mo2C及WC+W2C碳化物层.该致密连续的碳化物层具有较高的抗氧化能力,延缓了金刚石表面的氧化.镀Ti、Mo、W金刚石在空气中的氧化温度达958℃、871℃和880℃.Ti、Mo、W镀层经真空碳化处理后,抗氧化温度分别达1024℃、977℃和986℃.而未镀金刚石在780℃以上即开始氧化.  相似文献   

9.
采用真空热压扩散法在聚晶金刚石表面制备Ti层,探究金刚石表面金属化过程中的界面生成机制。利用扫描电子显微镜和X射线衍射仪,分析了钛层的表面形貌、界面结构和界面间的物相组成,采用能谱仪对界面进行了元素分析,计算了聚晶金刚石与Ti层之间界面的扩散带宽度及生成TiC的化学反应吉布斯自由能变。研究结果表明:在聚晶金刚石表面形成了平整、致密的Ti层,在聚晶金刚石与Ti层界面之间存在C、Ti和Co元素的扩散,在结合界面处产生了一定宽度的元素扩散带,同时在金刚石表面生成了点状TiC。真空热压扩散法实现了金刚石与Ti层的化学结合,可以提高金刚石与Ti层的结合强度。   相似文献   

10.
利用无敏化、活化的化学镀覆技术能成功地在Ti3SiC2颗粒表面均匀地化学镀铜.实验表明:镀前对陶瓷颗粒进行严格的粗化处理,使其表面具有很强的催化中心,通过采用合适的镀液配方和工艺,能成功地在Ti3SiC2颗粒表面镀覆一层铜,从而增强了陶瓷Ti3SiC2颗粒和铜基体之间的界面结合力,为Ti3SiC2在复合材料领域中的应用开辟了更广阔的前景.  相似文献   

11.
Aluminium-lithium based alloy plates were explosively clad with Al-1 wt% Zn alloy sheets. Clad plates were evaluated for bond continuity, interface shape, microstructure, variation of elemental concentrations across the bond interface, and bond strength. Comparisons of selected characteristics were made with roll clad sheets developed earlier.Ultrasonic tests revealed the bond to be continuous at all locations except over 50 mm wide edges of the plates. Both straight and wavy shaped interfaces were observed, often alternating arbitrarily. Microstructures on each side of the interface were distinct and characteristic of the individual alloys bonded. No localized melting was observed in the interface regions. Elemental concentration varied sharply across the bond line in the as-clad condition, later changing to a smooth profile after heat treatment. The diffusion widths, when expressed as a percentage of the cladding thickness, were much smaller than the corresponding values of previously studied roll clad sheets.'Tensile shear strength' of the clad samples exceeded the shear strength of monolithic Al-1%Zn alloy, thus indicating good bonding. The bond strength values were marginally lower than those of roll clad sheets. These differences could, perhaps, be due to the differences in the extent of elemental diffusion across the bond interface between the two techniques.  相似文献   

12.
金属陶瓷覆层-钢基体界面结合状态的研究   总被引:9,自引:0,他引:9  
为提高钢基材料的耐磨性和耐腐蚀性,以金属Mo粉、Fe粉和B-Fe合金粉末为原料,采用原位反应真空液相烧结技术,在钢基体表面制备三元硼化物金属陶瓷覆层.测定了覆层-钢基体界面结合强度及界面结合区的显微硬度变化,研究了界面微观结构和界面区元素分布,并对覆层-钢基体界面层形成的机理进行了分析.结果表明,覆层与钢基体之间的断裂破坏发生于界面附近的钢基体和覆层内,而不是覆层与钢基体之间结合界面的剥离;在覆层-钢基体结合界面处,存在由高硬度覆层到低硬度钢基体的狭窄过渡区,合金元素的分布形成具有一定厚度的过渡层.  相似文献   

13.
The present work aims at studying structure–property correlations in a weld overlay clad high strength low alloy steel with austenitic stainless steel of American Institute for Steel and Iron (AISI) 347 grade. Optical microscopy studies revealed that the interface between the two steels was nearly flat. The base plate had ferrite plus bainite microstructure adjacent to the interface and tempered bainite/martensite structure away from the interface. Grain coarsening and decarburization were observed near the interface. The stainless steel exhibited austenite dendritic structure. Tensile strength, notch-tensile strength and charpy impact energy of the base plate were found to be higher than those for the interface. The microhardness was observed to be maximum on the clad layer near interface. The shear bond strength of the weld overlay-interface was higher than the shear strength of the base plate. Fractography was carried out using scanning electron microscope on tensile, notch-tensile and shear bond test specimens of the interface as well as shear test specimens of the base plate. It revealed the presence of predominantly dimpled rupture. Charpy impact specimens of the interface failed in mixed mode while impact specimens of the base plate failed in ductile mode. Electron probe microanalysis across the bond interface indicated linear change in concentrations of Cr, Ni, Mn, Cu, Mo, Nb and Si between the levels appropriate to the clad layer and base metal.  相似文献   

14.
H13 tool steel powder was clad on copper alloy substrate both directly and using 41C stainless steel (high Ni steel) powder as a buffer layer by direct metal deposition (DMD). Cu-steel bimetallic die casting and injection molding tools are of high interest for reduction of cycle time by efficient heat extraction due to high thermal conductivity of copper. The mechanical properties of these bimetallic structures were investigated in terms of bond strength, impact energy and fracture toughness. The bond interfaces of these claddings showed porous and crack free transition regions. The bond strength was higher in the directly clad H13 tool steel compared to the H13 tool steel clad with 41C stainless steel as buffer layer. The fracture morphology in tensile test specimens showed ductile dimple fracture. Presence of necking just below the interface depicted the softening of substrate in heat affected zone (HAZ) during cladding. The Charpy impact energy is little higher in the 41C stainless steel buffered specimens compared to the directly clad H13 tool steel specimens but the fracture toughness results showed reduction of fracture toughness in the 41C stainless steel buffered specimens due to the low strength in the tensile test. However the fracture toughness value was in the ductile region for both deposits.  相似文献   

15.
Horizontal twin‐roll casting technology was successfully introduced to produce high‐performance copper/aluminum (Cu/Al) laminated composites. The interface morphology, electrical properties and peeling strength after different annealing and cold rolling processes were investigated and contrasted with Cu/Al clad plates fabricated by conventional methods. The results show that sound metallurgical bonding between the copper and aluminum matrix can be attained after the horizontal twin‐roll casting processes and Al2Cu is the only intermetallics at the interfacial region, the thickness of interfacial interlayer is about 0.7 μm. The peeling strength is 31.4 N/mm and can be further increased to 37.1 N/mm after annealing at 250 °C. However, higher temperature like 400 °C will cause the excessive growth of intermetallics so that peeling strength sharply decreases to 9.2 N/mm. Electrical conductivity of the clad plate is 51 MS/m. At the same electrical current intensity, the temperature‐rise of the composite plate is between the pure copper plate and the aluminum plate, and closer to the copper plate. All of the properties are outstanding than that of Cu/Al clad plate fabricated by conventional methods.  相似文献   

16.
In this paper, the effects of annealing temperature and time on mechanical properties and bond strength of aluminum clad steel sheet are evaluated. The results indicate that there exist an optimum annealing temperature and time for achieving a suitable formability and bonding strength between the clad layer and base metal. At this annealing time and temperature, the brittle intermetallic layer at the intimate interface of the layers is minimized.  相似文献   

17.
Diamond coating on Ti-6Al-4V alloy was carried out using microwave plasma enhanced CVD with a super high CH4 concentration, and at a moderate deposition temperature close to 500 °C. The nucleation, growth, adhesion behaviors of the diamond coating and the interfacial structures were investigated using Raman, XRD, SEM/TEM, synchrotron radiation and indentation test. Nanocrystalline diamond coatings have been produced and the nucleation density, nucleation rate and adhesion strength of diamond coatings on Ti alloy substrate are significantly enhanced. An intermediate layer of TiC is formed between the diamond coating and the alloy substrate, while diamond coating debonding occurs both at the diamond-TiC interface and TiC-substrate interface. The simultaneous hydrogenation and carburization also cause complex micro-structural and microhardness changes on the alloy substrates. The low deposition temperature and extremely high methane concentration demonstrate beneficial to enhance coating adhesion strength and reduce substrate damage.  相似文献   

18.
Abstract

The present work aims at studying structure–property correlations in an explosively clad HSLA steel with austenitic stainless steel of AISI 304L grade. The clad plate was subjected to hot rolling followed by a quenching and tempering treatment to achieve better mechanical properties in the base plate. Optical microscopy studies revealed that the interface between the two steels was wavy in the as clad plate and the waviness decreased substantially due to hot rolling. Subsequent heat treatment has not shown any significant effect either. The base plate had tempered martensite/bainite structure in as clad or heat treated conditions and ferrite-pearlite-bainite structure in hot rolled condition. The grains were finer and elongated near the interface. The stainless steel exhibited equiaxed grain structure in as clad, hot rolled or heat treated plates. Tensile properties and charpy impact energy of the base plate were lowered due to hot rolling and then increased substantially due to heat treatment. The microhardness was observed to be a maximum at the bond interface for all three conditions studied. The shear bond strength was the highest in the as clad condition and decreased for the rolled as well as heat treated conditions. Scanning electron microscopy fractography on shear bond specimens revealed the presence of predominantly equiaxed dimples with few regions of rubbed fracture. Quantitative electron probe microanalysis across the bond interface indicated linear change in concentrations of nickel, chromium and manganese between the levels appropriate to the clad layer and base metal.  相似文献   

19.
采用烧结-熔渗和后续热处理工艺制备了Co-Cr-Mo-Si颗粒强化的铁基粉末冶金材料,利用光学显微镜、扫描电镜和能谱分析技术,研究了不同渗铜量对材料显微组织的影响.研究表明:Co-Cr-Mo-Si硬颗粒单独存在于基体中,起颗粒强化的作用;未渗铜时,孔洞多,硬颗粒与基体界面清晰可见,结合强度差,随着渗铜量的增多,合金元素扩散程度提高,硬颗粒与基体界面结合强度好;材料的孔隙度减小,碳化物弥散分布程度提高;采用熔渗工艺并合理控制渗铜量,可获得组织均匀化、各相界面结合较好的铁基粉末冶金材料.  相似文献   

20.
The roles of titanium in active brazing of SiC have been studied extensively, while studies on the roles of silver and copper, which constitute the major parts of the active brazing alloys, have been overlooked. The effects of the relative contents of silver and copper in the brazing alloy on the interfacial reactions and bond strength have been investigated in this study. The interfacial reactions can be divided into the decomposition reaction of SiC by the brazing alloy melt and the interfacial reaction of titanium with SiC. Brazing by the Cu-5at% Ti alloy induced SiC to be decomposed, but the addition of silver to the brazing alloy suppressed the decomposition of SiC. TiC and Ti5Si3 was produced from the interfacial reactions of titanium independent of the brazing alloys. However, their morphologies and formation mechanisms differ greatly depending on the relative contents of silver and copper. The bond strength and fracture modes are also dependent on the relative contents of silver and copper. A good bond strength of 159–178 MPa was obtained by brazing with the Ag-5at% Ti alloy at 985°C for 600 s and fracture initiates at the interface of the reaction product layer and propagates through SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号