首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
交通标志检测在自动驾驶、辅助驾驶等领域是一个重要的环节,关乎到行车安全问题。针对交通标志中存在目标小、背景复杂等难点,提出一种基于改进YOLOv5的算法。提出区域上下文模块,利用多种扩张率的空洞卷积来获取不同感受野,进而获取到目标及其相邻区域的特征信息,相邻区域的信息对交通标志小目标检测起到重要补充作用,可以有效解决目标小的问题;在主干部分引入特征增强模块,进一步提高主干的特征提取能力,利用注意力机制与原C3模块结合,使网络更能聚焦小目标信息,避免复杂背景的干扰;在多尺度检测部分,将浅层特征层与深层检测层进行特征融合,可以同时兼顾浅层位置信息与深层语义信息,增加目标定位与边界回归的准确度,更有利于小目标检测。实验结果表明,改进后的算法在交通标志检测数据集TT100K上取得了87.2%的小目标检测精度、92.4%的小目标召回率以及91.8%的mAP,与原YOLOv5算法相比较,分别提升了3.5、4.1、2.6个百分点,检测速度83.3 frame/s;在CCTSDB数据集上mAP为98.0%,提升了2.0个百分点,检测速度90.9 frame/s。因此,提出的改进YOLOv5算法可以有效...  相似文献   

2.
为了实时检测并识别路上的交通标志,针对在不良光照情况影响下小型交通标志的识别精确度较低、误检、漏检严重的问题,提出了一种基于改进YOLOv5的交通标志识别模型.首先在YOLOv5模型的浅层特征图层增加一次concat操作,将浅层的特征信息结合中间特征图层作为一个检测头,有利于小目标交通标志的识别效率.其次将坐标注意力机制添加到YOLOv5模型中,从而提高特征提取的效率.对中国交通标志数据集TT100K进行数据扩充和暗光增强的操作,最后在经过预处理的TT100K数据集上验证本文改进的模型检测效果.实验结果表明本文改进的模型对小目标及昏暗情况的交通标志识别效率有很大的提升.本文改进的YOLOv5模型与最初的YOLOv5模型均在扩充后的数据集上进行训练后的结果相比,在准确率上提升了1.5%,达到了93.4%;召回率提升了6.8%,达到了92.3%; mAP值提高了5.2%,达到了96.2%.  相似文献   

3.
本文针对图像中小目标难以检测的问题,提出了一种基于YOLOv5的改进模型.在主干网络中,加入CBAM注意力模块增强网络特征提取能力;在颈部网络部分,使用BiFPN结构替换PANet结构,强化底层特征利用;在检测头部分,增加高分辨率检测头,改善对于微小目标的检测能力.本文算法在人脸瑕疵数据集和无人机数据集VisDrone2019两份数据集上均进行了多次对比实验,结果表明本文算法可以有效地检测小目标.  相似文献   

4.
小目标检测在计算机视觉领域具有重要意义,但现有方法在应对小目标的尺度变化、目标密集和无规则排列等挑战时经常出现漏检和误检的问题。为解决这些问题,提出基于改进YOLOv5算法的ATO-YOLO。为提升检测模型的特征表达能力,提出一种结合注意力机制的自适应特征提取模块(adaptive feature extraction,AFE),通过动态调整权重分配突出关键目标的特征表示,提高目标检测任务在不同场景下的准确性和鲁棒性。设计一种三重特征融合机制(triple feature fusion,TFF),能够在不同尺度下充分利用多尺度信息,将多个尺度的特征图融合,以获取更全面的目标特征,提升对小目标的检测效果。引入一种输出重构模块(output reconstruction,ORS),通过去除大目标检测层并增加小目标检测层,实现精确定位和识别小目标,并且相对于原模型复杂度更低,检测速度更快。实验结果表明,ATO-YOLO算法在VisDrone数据集上的mAP@0.5达到了38.2%,较原YOLOv5提升了6.1个百分点,且FPS较改进前提升了4.4%,能够快速准确地对小目标进行检测。  相似文献   

5.
交通标志检测在自动驾驶、辅助驾驶等智能交通系统已得到广泛应用,其检测性能关乎到行车安全。针对现有目标检测算法对图像中尺寸小、分辨率低和特征不明显的交通标志检测效果较差的问题,提出了一种基于改进YOLOv5s的交通标志检测算法。将原算法中80×80小感受野目标检测层改为感受野更小的160×160检测层,提高网络模型对交通标志小目标的检测能力,降低小目标的漏检率;构建了注意力上下文模块(attention context module,ACM),对各分支获取不同的感受野,得到目标及其相邻区域的特征信息,并且使用注意力机制,让网络更关注于图像中的交通标志,避免受其他复杂信息的影响;加入特征融合模块(feature fusion module,FFM),过滤不同层上的无用信息,只保留对模型检测交通标志有用的信息;加入隐性知识,对检测层进行输出细化。实验结果表明,改进后的算法在CCTSDB交通标志检测数据集上召回率和平均精度达到94.7%、97.6%,相比原模型均有提升,在中远距离小目标检测下效果改善明显,同时检测速度为47.3 FPS,满足实时性要求。  相似文献   

6.
针对目前我国智能驾驶辅助系统识别道路交通标志检测速度慢、识别精度低等问题,提出一种基于YOLOv3的改进的道路交通标志检测算法。首先,将MobileNetv2作为基础特征提取网络引入YOLOv3以形成目标检测网络模块MN-YOLOv3,在MN-YOLOv3主干网络中引入两条Down-up连接进行特征融合,从而减少检测算法的模型参数,提高了检测模块的运行速度,增强了多尺度特征图之间的信息融合;然后,根据交通标志目标形状的特点,使用K-Means++算法产生先验框的初始聚类中心,并在边界框回归中引入距离交并比(DIOU)损失函数来将DIOU与非极大值抑制(NMS)结合;最后,将感兴趣区域(ROI)与上下文信息通过ROI Align统一尺寸后融合,从而增强目标特征表达。实验结果表明,所提算法性能更好,在长沙理工大学中国交通标志检测(CCTSDB)数据集上的平均准确率均值(mAP)可达96.20%。相较于Faster R-CNN、YOLOv3、Cascaded R-CNN检测算法,所提算法拥有具有更好的实时性和更高的检测精度,对各种环境变化具有更好的鲁棒性。  相似文献   

7.
针对复杂环境中,烟雾火焰检测存在精度低,小目标检测困难等问题,提出一种改进的基于YOLOv5s的小目标烟雾火焰检测算法。基于公开数据集自建了9 981张不相似的烟雾火焰图像数据集,解决现有数据集的限制,提高了模型的训练效率与泛化能力;在网络中添加3-D注意力机制SimAM,增加算法的特征提取能力,而且没有增加额外的参数;修改网络中的Neck结构,将三尺度检测改为四尺度检测,并结合了加权双向特征金字塔网络(BiFPN)结构,对特征融合过程进行修改,提高小目标的检测能力与特征融合能力;通过遗传算法来优化网络中的部分超参数,进一步模型的检测能力。实验结果表明,改进后的算法比原始YOLOv5s算法平均检测精度提高了7.2%,同时对小目标检测精度更高,误检漏检等情况减少。  相似文献   

8.
针对在航拍图像检测任务中,物体和整体图像尺寸都比较小,尺度特征不一和细节信息不清晰,会造成漏检和误检等问题,提出了一种改进小目标检测算法CA-YOLOv8。设计了一种通道特征部分卷积模块CFPConv(channel feature partial convolution),基于此重新构造了C2f中的Bottleneck结构,命名为CFP_C2f,从而替换YOLOv8头部和颈部的部分C2f模块,增强有效通道特征权值,提升多尺度细节特征的获取能力。嵌入一种用以提升上下文聚合能力的模块CAM(context aggregated module),优化特征通道的响应,强化对深层特征的细节感知能力。添加NWD损失函数,将其与CIoU结合作为定位回归损失函数,降低位置偏差的敏感性。充分运用多重注意力机制的优势,把原有检测头替换为DyHead(dynamic head)。在VisDrone2019数据集的实验中,改进的算法较YOLOv8s原模型参数量降低了33.3%,检测精度mAP50值和mAP50:95分别提升了8.7和5.7个百分点,表现出良好的性能,验证了其有效性。  相似文献   

9.
实时而准确的交通标志检测是车辆的辅助驾驶和无人驾驶的关键需求。为解决目标检测算法对小目标物体检测精确率低、检测速度慢的问题,提出一种嵌入混合注意力机制的交通标志检测算法YOLOv3-HA。该算法融合改进的通道注意力机制和子空间注意力机制,使网络模型能够对特征进行通道和空间上的注意力加权,提升网络对有效特征的表达能力并减少干扰特征的影响。采用K-Means++聚类算法对锚框进行聚类和选择,加快网络模型的收敛速度。实验表明,该算法在TT100K(Tsinghua-Tencent 100 K)数据集上的平均准确率均值达到81.0%,相比于YOLOv3算法提升了14.2%;与一些主流目标检测算法相比,YOLOv3-HA算法在准确性和实时性上达到了良好的平衡。  相似文献   

10.
自动驾驶技术的快速发展,导致对交通标志检测技术的要求日益提高.为解决YOLOv7算法在识别小目标时误检、漏检等问题,本文提出一种基于注意力机制的交通标志检测模型YOLOv7-PC.首先通过K-means++聚类算法对交通标志数据集进行聚类,获得适用于检测交通标志的锚框;其次在YOLOv7主干特征提取网络中引入坐标注意力机制,将交通标志的横向和纵向信息嵌入到通道中,使生成的特征信息具有交通标志的坐标信息,加强有效特征的提取;最后在加强特征提取网络中引入空洞空间金字塔池化,捕获交通标志多尺度上下文信息,在保证交通标志小目标分辨率的同时,进一步扩大卷积的感受野.在中国交通标志检测数据集(CCTSDB)上的实验表明,本文算法增强了识别小目标的能力,相较于YOLOv7模型,本文算法的m AP、召回率平均分别提高了5.22%、9.01%,是一种有效的交通标志检测算法.  相似文献   

11.
交通灯检测算法作为自动驾驶任务中的一个重要环节,直接关系到智能汽车的行车安全。因为交通灯尺度小且环境复杂,给算法研究带来了困难。针对交通检测存在的痛点,提出改进YOLOv5的交通灯检测算法。首先使用可见标签比确定模型输入;然后引入ACBlock结构增加主干网络的特征提取能力,设计SoftPool减少主干网络的采样信息损失,使用DSConv卷积核减少模型参数;最后设计了记忆性特征融合网络,高效利用了高级语义信息和底层特征。对模型输入和主干网络的改进,直接提高模型在复杂环境下对特征的提取能力;对特征融合网络的改进,使模型能够充分利用特征信息,增加对目标定位和边界回归的精准度。实验结果表明,改进后的方法在BDD100K数据集上取得了74.3%的AP和111frame/s的检测速度,比YOLOv5提高11.0个百分点的AP;在Bosch数据集上取得了84.4%的AP和126frame/s的检测速度,比YOLOv5提高9.3个百分点的AP。鲁棒性测试结果表明,改进后的模型在各种复杂环境中对目标的检测能力都有显著提升,鲁棒性增加,做到了高精度实时检测。  相似文献   

12.
YOLOv5是目前单阶段目标检测性能较好的算法,但对目标边界回归的精确度不高,难以适用对预测框交并比要求较高的场景。基于YOLOv5算法,提出一种对硬件要求低、模型收敛速度快、目标框准确率高的新模型YOLO-G。改进特征金字塔结构(FPN),采用跨层级联的方式融合更多的特征,一定程度上防止了浅层语义信息的丢失,同时加深金字塔深度,对应增加检测层,使各种锚框的铺设间隔更加合理;其次把并行模式的注意力机制融入到网络结构中,赋予空间注意力模块和通道注意力模块相同的优先级,以加权融合的方式提取注意力信息,使网络可根据对空间和通道注意力的关注程度得到混合域注意力;通过降低网络的参数量和计算量对网络进行轻量化处理,防止因模型复杂度提升造成实时性能的损失。使用PASCAL VOC的2007、2012两个数据集来验证算法的有效性,YOLO-G比YOLOv5s的参数量减少了4.7%,计算量减少了47.9%,而mAP@0.5提高了3.1个百分点,mAP@0.5:0.95提高了5.6个百分点。  相似文献   

13.
对于血液中红细胞、白细胞、血小板等成分的观察和计数是临床医学诊断的重要依据.血细胞的异常意味着可能存在凝血异常、感染、炎症等与血液相关的问题.人工检测血细胞不仅耗费人力,且容易出现误检、漏检的情况.因此,针对上述情况,提出一种新颖的血细胞检测算法—YOLOv5-CBF.该算法在YOLOv5框架的基础上,通过在主干网络中加入坐标注意力(coordinate attention, CA)机制,提高检测精度;将颈部网络中的FPN+PAN结构中改为结合了跨尺度特征融合方法 (bidirectional feature pyramid network, BiFPN)思想的特征融合结构,使目标多尺度特征有效融合;在三尺度检测的基础上增加了一个小目标检测层,提高对数据集中小目标血小板的识别精度.通过在数据集BCCD上进行的大量的实验结果表明:与传统的YOLOv5算法相比较,该算法在3类血细胞检测的平均精度提升2.7%,试验效果良好,该算法对血细胞检测具有很高的实用性.  相似文献   

14.
为了准确且实时地检测到交通标志指示牌,减少交通事故的发生和推动智慧交通的发展,针对现有的道路交通标志检测模型存在的精度不足、权重文件大、检测速度慢的问题,设计了一种基于计算机视觉技术的改进YOLOv5s检测算法YOLOv5s-GC.首先,使用copy-paste进行数据增强后再送入网络进行训练,加强对小目标的检测能力;然后,引入Ghost来构建网络,削减原网络的参数和计算量,实现轻量化模型;最后,将坐标注意力机制(coordinate attention)融合到骨干网络里,增强对待测目标的表示和定位能力,提高识别精度.实验结果表明,YOLOv5s-GC模型相比于原YOLOv5s模型,参数数目减少了12%,检测速度提高了22%,平均精度达到了94.2%,易于部署且能满足实际自动驾驶场景中对识别交通标志的速度和准确度要求.  相似文献   

15.
交通标志检测在自动驾驶领域一直是个比较热门的课题。在深度学习算法中,YOLOv3和Faster R-CNN已经获得了极好的目标检测性能,但在检测小目标时,存在漏检的情况。针对交通标志检测中小目标准确快速识别的需求,本文提出一种轻量级YOLOv3的交通标志检测算法。通过卷积神经网络同时使用浅层和深层的特征提取,得到多尺度特征图,深层特征可以有效地保持检测精度不下降,浅层特征可以有效地提高小目标检测任务的精度。通过剪枝算法对模型进行压缩,将训练好的模型进行稀疏训练,把一些不重要的卷积核通道删除掉,对剪枝后的模型微调,保持模型文件中参数的平衡,同时保持检测精度。实验结果表明,通过提取多尺度特征图的方法模型准确率提高了2.3%,通过剪枝算法对模型压缩,使模型的权重大小减小了70%,模型的检测时间节省了90%。由此建立了鲁棒性更强的轻量级交通标志检测模型,可以部署在移动端嵌入式设备上,不再占用庞大的GPU计算资源即可提高检测效率。  相似文献   

16.
17.
针对工业场景下设备资源有限的情况,提出一种改进YOLOv5的轻量化带钢缺陷检测模型.首先,使用Shuffle Netv2代替主干特征提取网络,优化模型参数量和运行速度;其次,采用轻量级上采样算子CARAFE (contentaware reassembly of features),在增大感受野的同时进一步降低参数和计算量;同时引入GSConv层,在保证语义信息的同时平衡模型准确性与检测速度;最后,设计一种跨层级特征融合机制,提高网络的检测精度.实验结果表明,改进后的模型的平均检测精度为78.5%,相较于原始YOLOv5算法提升了1.4%;模型计算量为10.9 GFLOPs,参数量为5.88×106,计算量和参数量分别降低31%和15.4%;检测速度为49 f/s,提升了3.5 f/s.因此,改进后的模型提高了检测精度和检测速度,并且大幅降低了模型的计算量和参数量,能够满足对带钢表面缺陷进行实时检测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号