首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
以葡萄糖值(DE)为考察指标,在单因素试验基础之上,利用响应面法研究时间、温度及酶与底物比(E/S)对α-淀粉酶酶解木薯淀粉的影响。利用Lineweaver-Burk和Wilkinson统计法求解米氏常数(K_m)和最大反应速度(V_m),并建立相应动力学模型。结果表明:α-淀粉酶酶解木薯淀粉制备葡萄糖的最佳参数为:温度60℃,E/S=0.1 U/mg、时间130 min。在此条件下,DE验证值为(82.91±1.32)%。在pH 6.0,50℃条件下,K_m=12.077 mg/mL,V_m=0.218 mg/(mL·min)。在37~52℃范围内,Ea=44.611 kJ/mol,△H=110.847 kJ/mol。  相似文献   

2.
以葡萄糖值(DE)为考察指标,利用单因素实验和响应面法研究温度、p H及酶与底物比(E/S)对α-淀粉酶酶解鹰嘴豆淀粉制糖的影响。应用Lineweaver-Burk和Wilkinson统计法分别求解米氏常数(Km)和最大反应速度(Vm),并建立相应的动力学模型。结果表明:α-淀粉酶酶解鹰嘴豆淀粉制糖的最佳参数为:p H 6.5,温度55℃及E/S=0.12 U/mg,验证值为23.103%±0.454%。在3050℃范围内,Ea=18.977 k J/mo L,ΔH=19.624 k J/mol。该研究为鹰嘴豆淀粉工业制糖提供理论依据。   相似文献   

3.
以葡萄糖当量值(DE)为考察指标,利用单因素和响应面法对α-淀粉酶酶解荸荠淀粉工艺进行优化,并计算相应酶解动力学参数。结果表明:α-淀粉酶酶解荸荠淀粉优化工艺为:时间88min、温度53℃、E/S=0.12U/mg和p H7.7。在此条件下,验证实验DE为(53.393%±0.899%)。在p H7.0,60℃条件下,Km=47.298mg/m L,Vmax=0.335mg/(m L·min),Ea=11.995k J/mol,△H=71.882k J/mol。  相似文献   

4.
以葡萄糖当量值(DE)为考察指标,利用单因素和响应面法对α-淀粉酶酶解荸荠淀粉工艺进行优化,并计算相应酶解动力学参数。结果表明:α-淀粉酶酶解荸荠淀粉优化工艺为:时间88min、温度53℃、E/S=0.12U/mg和p H7.7。在此条件下,验证实验DE为(53.393%±0.899%)。在p H7.0,60℃条件下,Km=47.298mg/m L,Vmax=0.335mg/(m L·min),Ea=11.995k J/mol,△H=71.882k J/mol。   相似文献   

5.
研究甘薯淀粉的α-淀粉酶酶解工艺及动力学。以葡萄糖释放率为考察指标,研究酶解时间、酶量、淀粉浓度、p H值及酶解温度对α-淀粉酶酶解甘薯淀粉的影响,利用单因素和响应面法优化酶解工艺。通过Lineweaver-Burk和Wilkinson统计法求解米氏常数(Km)和最大反应速度(Vm),建立相应动力学模型。结果表明:α-淀粉酶酶解甘薯淀粉最优参数为:时间40 min,温度60℃,p H 5.0,酶量0.6 U/m L和淀粉质量浓度5 mg/m L,在此条件下,验证值为(50.676±0.294)%,n=5,RSD=0.519%。在p H 6.0,50℃条件下,活化能(Ea)=31.986 k J/mo L,Km=0.988 mg/m L,Vm=0.107 mg/(m L·min)。  相似文献   

6.
采用中温型α-淀粉酶对马铃薯淀粉进行水解,以马铃薯淀粉水解液的DE值为评价指标,在p H、酶解温度、酶解时间单因素实验的基础上,采用响应面法优化了马铃薯淀粉酶解工艺条件。结果表明:p H7.90,酶解温度62℃,酶解时间60 min,在此最优条件下酶解马铃薯淀粉的DE值达57.93%。   相似文献   

7.
响应面法优化海参卵酶解工艺   总被引:1,自引:1,他引:1  
以水解度和肽得率为评价指标,从4种酶中选择出木瓜蛋白酶为水解海参卵最佳用酶.利用二次回归旋转正交组合设计,建立关于木瓜蛋白酶水解海参卵过程中温度、pH值、底物浓度对水解度影响的三元二次方程.通过对方程的拟合分析得到木瓜蛋白酶的最佳工艺条件并修正为:温度52 ℃、 pH值5.5、底物浓度8.4%、加酶量2 500 U/g、反应时间4 h.在此条件下,水解度为20.51%.  相似文献   

8.
采用Box.Behnken中心组合设计和响应面分析,对木瓜蛋白酶酶解林蛙油的主要影响因素即底物浓度、加酶量、酶解温度、时间、pH值进行多项式回归模型建立和最优化,同时对酶解产物进行质谱分析检测。结果表明最佳工艺条件为:底物浓度1%,加酶量1000U/g,温度60℃,时间3.Oh,pH6.5;产物经激光解吸电离飞行时间质谱仪分析,水解液中含有四种不同的物质,分子量分别为712.4、826.6、1101.2和1326.1D。  相似文献   

9.
采用超声波-微波辅助酶解制备小麦抗性淀粉,以抗性淀粉收率为指标,在单因素试验基础上,进行Box-Behnken试验设计,对超声时间、微波时间、普鲁兰酶添加量和酶解时间4个因素进行响应面优化试验分析.结果表明:4个因素的影响主次关系为普鲁兰酶酶解时间>超声时间>普鲁兰酶添加量>微波时间.响应面优化试验确定超声波-微波辅助...  相似文献   

10.
目的:确定黄粉虫抗菌肽的最佳酶解工艺。方法:以黄粉虫为原料,碱提酸沉法提取黄粉虫蛋白质,再利用筛选出的蛋白酶进行水解,并用琼脂平板扩散法(打孔法)表征制得抗菌肽的抑菌活性。在单因素试验的基础上,应用Box-Behnken中心组合试验设计和响应面(RSM)分析法,探讨酶解温度、pH值、酶解时间、加酶量及底物质量浓度对酶解产物抑菌活性的影响。结果:碱性蛋白酶最适合水解黄粉虫蛋白制备抗菌肽,其最佳工艺条件为:底物质量浓度810g/100mL、酶解时间4.4h、加酶量440U/g pro、酶解温度54℃、pH9.5;酶解物抑菌圈大小理论预测值为15.17mm,实际测量值为15.04mm。结论:碱性蛋白酶水解黄粉虫蛋白能够得到抑菌活性较强的酶解物,优化的工艺条件与理论预测拟合程度较高。  相似文献   

11.
以鲐鱼头为原料,水解度为指标,采用单因素试验,比较中性蛋白酶、木瓜蛋白酶和风味蛋白酶对鲐鱼头的酶解效果,并进一步对风味蛋白酶的酶解工艺参数进行响应面法优化。结果表明:风味蛋白酶的酶解效果最好,其加酶量、酶解温度和时间对水解度均有极显著影响(P < 0.01);响应面法优化得到鲐鱼头酶解的最适条件为风味蛋白酶添加量1311U/g、酶解温度46℃、反应时间7h,鲐鱼头的水解度达到31.18%。  相似文献   

12.
对葛根淀粉增抗的工艺进行了优化。通过单因素试验确定了淀粉乳浓度、冷藏时间、普鲁兰酶用量3个试验因素的取值范围.用响应面分析法确定了最佳工艺参数:淀粉乳浓度为7.3%、冷藏时间21.5h和普鲁兰酶用量25 ASPU/g干淀粉。据此工艺参数制得葛根抗性淀粉含量达到12.5%。  相似文献   

13.
研究微波对酶解合浦珠母贝蛋白的影响,以水游离氨态氮含量和抗氧化活性为指标,选择较好的作用酶,通过单因素试验确定料液比、加酶量(E/S)、微波温度、微波功率及时间和后续水浴时间等因素水平,以水解度和DPPH自由基清除率为响应值,响应面法优化酶解合浦珠母贝蛋白工艺条件。结果表明,微波辅助蛋白酶酶解合浦珠母贝蛋白工艺条件为微波温度58 ℃、微波功率300 W、微波时间17 min、加酶量5 000 U/g,后续在58 ℃条件下再水浴1.5 h。预测响应值为0.224 4,水解度达到26.15%,验证实验证明与响应优化模型预测值误差不大,二次多元拟合度较好。  相似文献   

14.
玉米抗性淀粉酶解法制备工艺的研究   总被引:3,自引:0,他引:3  
以抗性淀粉得率为评价指标,采用酶解法制备玉米抗性淀粉,通过正交试验确定了酶解法制备的最佳工艺条件:α-淀粉酶酶解条件为淀粉乳浓度20%,α-淀粉酶用量15u/g,酶解温度70℃;普鲁兰酶脱支条件为普鲁兰酶用量4u/g,脱支时间10h,pH值4.5;糊化条件为糊化时间20min,糊化温度120℃。  相似文献   

15.
效应面法与酶法联用提取纹党多糖的优化工艺研究   总被引:6,自引:0,他引:6  
通过效应面法与酶法联用工艺提取纹党中的活性物质纹党多糖,以含量为评价指标,用单因素方差分析法研究酶解温度、酶添加量和pH对提取纹党多糖含量的影响;采用效应面法和对酶法联用提取工艺条件进行优化。结果显示,最佳优化工艺为:酶解温度为53.26℃,酶添加量为0.09 g和pH值为4.63,该工艺条件易于控制、工艺简单、成本低,在此条件下,纹党酶解后纹党多糖的含量最高为38.86%。  相似文献   

16.
利用响应面法优化超声波辅助酶解合浦珠母贝肉的工艺条件。单因素试验研究超声波功率、温度、超声时间对水解度的影响,在此基础上,应用Box-Behnken 中心组合设计建立数学模型,以水解度(DH)作为响应值,进行三因素三水平的响应面分析(Minitab)。结果表明,超声波辅助酶解合浦珠母贝肉的最佳工艺条件为:超声波功率160W、处理温度50℃、处理17min 后,水解1h 后产物水解度为31%,平均肽链长度3.2,与预测值的相对误差为0.5%。  相似文献   

17.
张媛媛  聂少平  万成  谢明勇 《食品科学》2010,31(19):236-240
以大孔阴离子树脂D311 为载体,对日本曲霉来源的β-D- 呋喃果糖苷酶进行离子交换法固定化。研究温度、pH 值、时间、游离酶液酶活力对固定化效果的影响,并在此基础上运用响应面法对固定化条件进行优化。结果表明,最佳固定化条件为:室温、pH6.6、固定化时间4h、游离酶液酶活力为900U/mL,在此条件下,固定化β-D- 呋喃果糖苷酶生产的低聚果糖产量可达58.16%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号