首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current theories of galaxy formation predict that spiral galaxies are embedded in a reservoir of hot gas. This gas is able to cool on to the galaxy, replenishing cold gas that is consumed by star formation. Estimates of the X-ray luminosity emitted in the cooling region suggest a bolometric luminosity of the order of 10×1041 erg s−1 in massive systems. We have used ROSAT PSPC data to search for extended X-ray emission from the haloes of three nearby, massive, late-type galaxies: NGC 2841, 4594 and 5529. We infer 95 per cent upper limits on the bolometric X-ray luminosities of the haloes of NGC 2841, 4594 and 5529 of 0.4, 1.2 and 3.8×1041 erg s−1 respectively. Thus, the true luminosity lies well below the straightforward theoretical prediction. We discuss this discrepancy and suggest a number of ways in which the theoretical model might be brought into agreement with the observational results. A possible solution is that the gravitational potentials of the dark matter haloes of these galaxies are weaker than assumed in the current model. Alternatively, the present-day accretion may be substantially less than is required on average to build the disc over the Hubble time. Our results are, however, based on only three galaxies, none of which is ideal for this kind of study. A larger data set is required to explore this important problem further.  相似文献   

2.
3.
4.
We present the results based on multiwavelength imaging observations of the prominent dust lane starburst galaxy NGC 1482 aimed to investigate the extinction properties of dust existing in the extreme environment. (B-V) colour-index map derived for the starburst galaxy NGC 1482 confirms two prominent dust lanes running along its optical major axis and are found to extend up to ∼11 kpc. In addition to the main lanes, several filamentary structures of dust originating from the central starburst are also evident. Though, the dust is surrounded by exotic environment, the average extinction curve derived for this target galaxy is compatible with the Galactic curve, with RV = 3.05, and imply that the dust grains responsible for the optical extinction in the target galaxy are not really different than the canonical grains in the Milky Way. Our estimate of total dust content of NGC 1482 assuming screening effect of dust is ∼2.7 × 105 M, and provide lower limit due to the fact that our method is not sensitive to the intermix component of dust. Comparison of the observed dust in the galaxy with that supplied by the SNe to the ISM, imply that this supply is not sufficient to account for the observed dust and hence point towards the origin of dust in this galaxy through a merger like event.Our multiband imaging analysis reveals a qualitative physical correspondence between the morphologies of the dust and Hα emission lines as well as diffuse X-ray emission in this galaxy. Spatially resolved spectral analysis of the hot gas along outflows exhibit a gradient in the temperature. Similar gradient was also noticed in the measured values of metallicity, indicating that the gas in the halo is not yet enriched. High resolution, 2-8 keV Chandra image reveals a pair of point sources in the nuclear region with their luminosities equal to 2.27 × 1039 erg s−1 and 9.34 × 1039 erg s−1, and are in excess of the Eddington-limit of 1.5 M accreting source. Spectral analysis of these sources exhibit an absorbed-power law with the hydrogen column density higher than that derived from the optical measurements.  相似文献   

5.
Observations of the dwarf Irr galaxy IC 10 have been performed at the 6-m Special Astrophysical Observatory telescope with the SCORPIO focal reducer in the mode of a slit spectrograph. The ionized-gas emission spectrum in the region of intense current star formation has been investigated. The relative oxygen, N+, and S+ abundances in about twenty H II regions and the synchrotron superbubble have been estimated. The galaxy-averaged oxygen abundance is 12 + log(O/H) = 8.17 ± 0.35 and the metallicity is Z = 0.18 ± 0.14Z . The metallicity found by comparing diagnostic diagrams with photoionization models is shown to be less reliable than its estimate based on strong oxygen lines.  相似文献   

6.
We compute the redshift space power spectrum of two X-ray cluster samples: the X-ray Brightest Abell Cluster Sample (XBACS) and the Brightest Cluster Sample (BCS) using the method developed by Feldman, Kaiser & Peacock. The power spectra derived for these samples are in agreement with determinations of other optical and X-ray cluster samples. For XBACS we find the largest power spectrum amplitude expected, given the high richness of this sample ( R ≥2) . In the range 0.05< k <0.4  h  Mpc−1 the power spectrum shows a power-law behaviour P ( k )∝ k n with an index n ≃−1.2 . In a similar range, 0.04< k <0.3  h  Mpc−1 , the BCS power spectrum has a smaller amplitude with index n ≃−1.0 . We do not find significant evidence for a peak at k ≃0.05  h  Mpc−1 , suggesting that claims such of feature detections in some cluster samples could rely on artificial inhomogeneities of the data. We compare our results with power spectrum predictions derived by Moscardini et al. within current cosmological models (LCDM and OCDM). For XBACS we find that both models underestimate the amplitude of the power spectrum but for BCS there is reasonably good agreement at k ≳0.03  h  Mpc−1 for both models.  相似文献   

7.
ROSAT /HRI observations of the powerful radio-loud galaxy 3C 382 reveal extended X-ray emission associated with the source. On the basis of this new spatial component, a previous ROSAT /PSPC spectral analysis of the source is revised. Allowing for the presence of an additional thermal component in the PSPC spectrum, the non-thermal component is found to be compatible with the extrapolation of the well-defined 3C 382, 2–10 keV, power-law spectrum into the soft X-ray region. The thermal – extended – component would then account for the soft excess emission previously reported for this source. The origin of this thermal component is not clear. Its luminosity compares with that of rich Abell clusters; yet, the galaxy environment in 3C 382 appears of moderate optical richness. An alternative is that it is the result of a massive extended gaseous atmosphere sustained by the deep gravitational potential well of 3C 382.  相似文献   

8.
The three major large-scale, diffuse γ-ray structures of the Milky Way are the Galactic disk,a bulge-like GeV excess towards the Galactic center, and the Fermi bubble. Whether such structures can also be present in other normal galaxies remains an open question. M31, as the nearest massive normal galaxy, holds promise for spatially-resolving the γ-ray emission. Based on more than 8 years of Fermi-LAT observations, we use(1) disk,(2) bulge, and(3) disk-plus-bulge templates to model the spatial distribution of the γ-ray emission from M31. Among these, the disk-plus-bulge template delivers the best-fit, in which the bulge component has a TS value 25.7 and a photon-index of 2.57 ± 0.17, providing strong evidence for a centrally-concentrated γ-ray emission from M31, that is analogous to the Galactic center excess. The total0.2–300 GeV γ-ray luminosity from this bulge component is(1.16 ± 0.14) × 1038 erg s-1, which would require ~ 1.5 × 105 millisecond pulsars, if they were the dominant source. We also search for a Fermi bubble-like structure in M31 using the full dataset(pass8), but no significant evidence has been found.In addition, a likelihood analysis using only photons with the most accurate reconstructed direction(i.e.,PSF3-only data) reveals a 4.8 σ point-like source located at ~10 kpc to the northwest of the M31 disk, with a luminosity of(0.97 ± 0.27) × 1038 erg s-1 and a pho@ton-$i·nd3 ex of 2.31 ± 0.18. Lacking a counterpart on the southeast side of the disk, the relation between this point-like source and a bubble-like structure remains elusive.  相似文献   

9.
We present a new total intensity image of M31 at 1.248 GHz, observed with the Five-hundred-meter Aperture Spherical radio telescope(FAST) with an angular resolution of 4’ and a sensitivity of about 16 mK. The new FAST image clearly reveals weak emission outside the ring due to its high sensitivity on large-scale structures. We derive a scale length of 2.7 kpc for the cosmic ray electrons and find that the cosmic ray electrons propagate mainly through diffusion by comparing the scale length at 4....  相似文献   

10.
We present the results of our analysis of the observations of the intermediate polar V2400 Oph by the INTEGRAL and RXTE observatories. We reconstructed the spectrum of the source over a wide (3–100 keV) energy range. The spectrum obtained can be fitted by a computed theoretical model of the post-shock emitting region with Tmax~22 keV. As a result, we estimated the mass (0.59M) and radius (8.8×108 cm) of the white dwarf in the system V2400 Oph.  相似文献   

11.
12.
This paper shows how a new model can be used to explain the observational spectrum of the OH megamaser emission from the external galaxy IIIZw35 obtained using a single-dish and the position map of its spots obtained using MERLIN. The computational results indicate that both models and fitting are consistent.  相似文献   

13.
According to Ambartsumyan, one of the forms of galactic activity is the outflow of gaseous material in the form of jets or clouds from the region of the nucleus at velocities up to hundreds or thousands of km/s, which sometimes leads to the breakup of the nucleus and the ejection of large bursts of material from it. Quite a lot is known about the results of these ejections, especially for quasars and active galaxies. They have been detected and studied in detail with regard to changes in their outer appearance. However, the exact time of the ejections is not known, although statistically they occur frequently and irregularly. The detection of changes in the spectra of galaxies is of special interest, but these are much harder to detect over short times. Nevertheless, the probability of detecting the time of an ejection within a short time is nonzero. Additional new emission components of the hydrogen Hα, Hβ, and Hγ lines over a year in the spectrum of the Sy2 galaxy Mark 6 were first discovered by Khachikian and Weedman in 1969. This paper describes the origin and subsequent interesting fate of this new hydrogen formation (cloud).  相似文献   

14.
We present evidence of flux variability, on both short (hours) and long (months) time-scales, of the Seyfert 2 galaxy NGC 7172. These results are based on the ASCA observation of NGC 7172 performed in 1996 May. The source was detected at a rather low flux level, about 3 times fainter than its usual state (including 1 yr before, when it was also observed by ASCA ).   The source also varied by about 30 per cent during the observation, confirming the presence of a type 1 nucleus in its centre. However, its spectrum appears to be flatter than the typical Seyfert 1 spectrum (in agreement with findings on other Seyfert 2s), posing problems for the unification model unless complex absorption is invoked.  相似文献   

15.
16.
17.
18.
First studies of the X‐ray source population of M 31 were performed with the Einstein Observatory and ROSAT. High resolution Chandra Observatory images not only spatially resolved the center area but also supernova remnants (SNRs) in the galaxy. Source catalogues of restricted areas were presented with high astrometric accuracy. Also luminosity function studies and studies of individual sources based on Chandra and XMM‐Newton observations led to a better knowledge of the X‐ray source population. An XMM‐Newton source catalog based on archival observations revealed more than 850 sources down to a 0.2–4.5 keV luminosity of 1035 erg s–1. EPIC hardness ratios as well as informations from earlier X‐ray, optical, and radio catalogues were used to distinguish between different source classes (SNRs, supersoft sources (SSSs), X‐ray binaries (XRBs), globular cluster sources within M 31, and foreground stars and objects in the background). However, many sources could only be classified as “hard”. These sources may either be XRBs or Crab‐like SNRs in M 31 or background sources. Two of the globular cluster sources could be identified as low mass XRBs with a neutron star as compact object as they showed type I X‐ray bursts. Many of the SSSs were identified as optical novae. Inspired by these results an XMM‐Newton survey of the entire D25 disk of M 31 and a dedicated program to monitor X‐ray counterparts of optical novae in M 31 was started. We discuss implications for further nearby galaxy studies. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
A model for the inner regions of accretion flows is presented where, owing to disc instabilities, cold and dense material is clumped into deep sheets or rings. Surrounding these density enhancements is hot, tenuous gas where coronal dissipation processes occur. We expect this situation to be most relevant when the accretion rate is close to Eddington and the disc is radiation-pressure-dominated, and so may apply to narrow-line Seyfert 1 (NLS1) galaxies. In this scenario, the hard X-ray source is obscured for most observers, and so the detected X-ray emission would be dominated by reflection off the walls of the sheets. A simple Comptonization calculation shows that the large photon-indices characteristic of NLS1s would be a natural outcome of two reprocessors closely surrounding the hard X-ray source. We test this model by fitting the XMM-Newton spectrum of the NLS1 1H  0707–495  between 0.5 and 11 keV with reflection-dominated ionized disc models. A very good fit is found with three different reflectors each subject to the same  Γ=2.35  power law. An iron overabundance is still required to fit the sharp drop in the spectrum at around 7 keV. We note that even a small corrugation of the accretion disc may result in  Γ>2  and a strong reflection component in the observed spectrum. Therefore, this model may also explain the strength and the variability characteristics of the MCG–6-30-15 Fe K α line. The idea needs to be tested with further broad-band XMM-Newton observations of NLS1s.  相似文献   

20.
Measurement sensitivity in the energetic γ-ray region has improved considerably and is about to increase further in the near future, motivating a detailed calculation of high-energy (HE; ≥100 MeV) and very high-energy (VHE; ≥100 GeV) γ-ray emission from the nearby starburst galaxy NGC 253. Adopting the convection–diffusion model for energetic electron and proton propagation, and accounting for all the relevant hadronic and leptonic processes, we determine the steady-state energy distributions of these particles by a detailed numerical treatment. The electron distribution is directly normalized by the measured synchrotron radio emission from the central starburst region; a commonly expected theoretical relation is then used to normalize the proton spectrum in this region. Doing so fully specifies the electron spectrum throughout the galactic disc and, with an assumed spatial profile of the magnetic field, the predicted radio emission from the full disc matches well the observed spectrum, confirming the validity of our treatment. The resulting radiative yields of both particles are calculated; the integrated HE and VHE fluxes from the entire disc are predicted to be   f (≥100 MeV) ≃ (1.8+1.5−0.8) × 10−8 cm−2 s−1  and   f (≥100 GeV) ≃ (3.6+3.4−1.7) × 10−12 cm−2 s−1  , with a central magnetic field value   B 0≃ 190 ± 10 μ  G. We discuss the feasibility of measuring emission at these levels with the space-borne Fermi and ground-based Cherenkov telescopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号