首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Imidazo[2,1‐b][2H‐1,3,4]thiadiazines were prepared by cyclization of 2‐amino‐5‐(4‐chlorophenyl)‐6H‐1,3,4‐thiadiazine with α‐haloketones. 1,2,4‐Triazolo[3,4‐b][2H‐1,3,4]thiadiazines were prepared by cyclization of 4‐amino‐5‐sulfanyl‐l,2,4‐triazoles with phenacyl bromides.  相似文献   

3.
A number of 4,5‐dihydrobenzo[e]imidazo[2,1‐c][1,4,2]diazaphosphinine derivatives were prepared by the direct phosphorylation of 1‐(4‐Chlorophenylcarboxamido)‐2‐(1H‐1‐imidazolyl)‐5‐trifluoromethylbenzene in basic medium with phosphorus(III) bromide and dibromophenylphosphine. The tricyclic compounds 6a, 6b , and 9 having a trivalent phosphorus atom undergo the diazaphosphinine ring opening upon treatment with secondary amines in the presence of sulfur. © 2002 John Wiley & Sons, Inc. Heteroatom Chem 13:84–92, 2002; DOI 10.1002/hc.10000  相似文献   

4.
Reactions of 4‐arylhydrazono‐2‐methylthio‐imidazolin‐5(1H)‐one 3 with various hydrazonoyl halides 1 proved to be site‐selective and yielded the respective imidazo[2,1‐c][1,2,4]triazole derivatives 8 . The structure of the latter was elucidated by X‐ray analysis and the mechanism of the studied reactions was discussed.  相似文献   

5.
The cyclization of the derivatives of 3‐aminotriazole, 2‐(5‐substituted 4H‐1,2,4‐triazol‐3‐ylamino)‐1‐arylethanones and 2‐(4H‐1,2,4‐triazol‐3‐ylthio)‐1‐arylethanones to yield 6‐aryl‐4H‐imidazo[1,2‐b][1,2,4]triazoles and 6‐aryl‐thiazolo[3,2‐b][1,2,4]triazoles has been described.  相似文献   

6.
7‐Functionalized title compounds 5 are obtained by cyclization of 3‐acetonyl‐ or 3‐[(alkoxycarbonyl)‐methyl]‐4‐phenacyl‐1,2,4‐triazolium salts 2 having methyl at C(5) the process can be effected in an acetate buffer or by base, irrespective of the function at C(3). 5‐Unsubstituted salts 2 do not react unless the side chain at C(3) is an acetonyl group. Cyclization of 2 with acetic anhydride‐base gives rise to 5,7‐difunctionalized compounds 8 ; again methyl at C(5) of 2 is compulsory, but here the reaction can be extended to salts having an (alkoxycarbonyl)methyl group at C(4). Regarding defunctionalization, acetyl groups can be split from C(5) only, whereas ester functions are removable also from C(7). Title compounds devoid of acceptor groups ( XIII ) are unstable but can be trapped by electrophilic reagents (DMAD, acetic anhydride, and phenyl isocyanate) to give the derivatives 10 and 12 . The 7‐functionalized products 5 are likewise susceptible to SE‐reactions. By comparison, all title compounds appear to be more reactive toward this kind of reagents than the isomeric 1H‐pyrrolotriazoles ( 13 ) including 2H‐pyrrolotetrazoles ( III ). This is consistent with B3LYP‐DFT calculations using appropriate models.  相似文献   

7.
A novel series of coumarin substituted triazolo‐thiadiazine derivatives were designed and synthesized by using 5‐methyl isoxazole‐3‐carboxylic acid ( 1 ), thiocarbohydrazide ( 2 ), and various substituted 3‐(2‐bromo acetyl) coumarins ( 4a , 4b , 4c , 4e , 4d , 4f , 4g , 4h , 4i , 4j ). Fusion of 5‐methyl isoxazole‐3‐carboxylic acid with thiocarbohydrazide resulted in the formation of the intermediate 4‐amino‐5‐(5‐methylisoxazol‐3‐yl)‐4H‐1,2,4‐triazole‐3‐thiol ( 3 ). This intermediate on further reaction with substituted 3‐(2‐bromo acetyl) coumarins under simple reaction conditions formed the title products 3‐(3‐(5‐methylisoxazol‐3‐yl)‐7H‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazin‐6‐yl‐2H‐chromen‐2‐ones ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j ) in good to excellent yields. All the synthesized compounds were well characterized by physical, analytical, and spectroscopic techniques.  相似文献   

8.
Novel 6‐(1,2,3‐triazol‐4‐yl)‐5‐[(2‐(thiazol‐2‐yl)hydrazono)methyl]imidazo[2,1‐b ]thiazoles 7 , 9a , 9b , 9c , 9d , and 11 were prepared by reaction of thiosemicarbazone 5a , 5b with either hydrazonoyl chloride 6 , phenacylbromides 8 or 2‐bromo‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)ethanone 10 respectively. The new products were tested for their antimicrobial activities using 96‐well micro‐plate assay, and compound 7 showed excellent antibacterial activities compared with Vancomycine (reference drugs), while compounds 5b and 9c exhibited good results against yeast. The minimum inhibitory concentration (MIC) was determined, and compound 7 showed the lowest MIC against Gram positive bacteria while compound 5b showed the lowest MIC against yeast.  相似文献   

9.
Two regioselective synthetic approaches for the title compounds 7 via reaction of hydrazonoyl halides 1 with 3‐methylthio‐5‐phenyl‐1,2,4‐triazole 3 and base‐catalyzed cyclization of N‐phenyl‐N‐(5‐phenyl‐s‐triazol‐3‐yl)thiohydrazides 6 are described. The mechanisms of the reactions studied and the biological activity of the isolated products 6 and 7 are pointed out.  相似文献   

10.
The synthesis of new ligands for the H3 histamine receptor is described. These new compounds are spinacine derivatives obtained by alkylation or Michael reaction at C6 position.  相似文献   

11.
The Schiff bases 3a‐h obtained from 4‐amino‐1,2,4‐triazol‐3‐ones 1a‐h when subjected to Japp‐Klingemann reaction yielded the corresponding 3‐{2‐[(2‐aryl‐5‐methyl‐3H‐[1,2,4]‐triazol‐3‐one‐4‐yl)]‐iminophenyl}‐pentane‐2,4‐diones 4a‐h . These diones on cyclisation with N2H4 yielded the title compounds 5a‐h . The energetics of the Keto‐enol tautomers of the diones was calculated by semiemperical calculations using AM1 and PM3 methods. All these compounds were screened for their antimicrobial activity against few microbes and most of them exhibited fungal inhibition more than the reference drugs used.  相似文献   

12.
A versatile synthetic route to potentially useful fused-ring [1,2,4]thiadiazole scaffolds (e.g., 7a and 10b) via exchange reactions of the precursor [1,2,4]thiadiazol-3-(2H)one derivatives (e.g., 6 and 9) with appropriately substituted nitriles (e.g., cyanogen bromide or p-toluenesulfonyl cyanide) under mild conditions is described. For example, the tricyclic 3-bromo [1,2,4]THD derivative (7a) underwent S(N)Ar substitution with a variety of nucleophiles, which included amines, malonate esters and alcohols. Likewise, the bicyclic 3-p-tosyl [1,2,4]THD (10b) was employed as a template in reaction with diamines, and the resulting substituted diamines (e.g., 12a or 12e) were further selectively derivatized at the N1 and/or N2 positions in a linear fashion. The X-ray crystal structure of the 3-methyl bicyclic [1,2,4]THD (21) was obtained, and selective methylation at the N1 position via a protection-alkylation-deprotection protocol, as illustrated in Scheme 6, was confirmed. Alternatively, a short convergent synthesis of N1-functionalized derivatives from the reaction of 10b with appropriately substituted secondary amines was also developed. Hence, these synthetic strategies were advantageously exploited to provide access to a variety of diversely derivatized 3-substituted fused-ring [1,2,4]thiadiazole derivatives.  相似文献   

13.
Novel derivatives of benzo[h ]thieno[2,3‐b ]quinoline‐9‐yl(aryl)methanone were synthesized in good yield and short reaction times by reaction of 2‐mercaptobenzo[h ]quinoline‐3‐carbaldehyde with phenacyl bromides under basic conditions. All compounds were characterized using Fourier transform infrared, 1H nuclear magnetic resonance and 13C nuclear magnetic resonance, spectral data, and elemental analysis.  相似文献   

14.
A series of triorganotin (4H‐1,2,4‐triazol‐4‐yl)benzoates have been synthesized by the reaction of 4‐(4H‐1,2,4‐triazol‐4‐yl)benzoic acid and 3‐(4H‐1,2,4‐triazol‐4‐yl)benzoic acid with (R3Sn)2O (R = Et, n‐Bu and Ph) or R′3SnOH (R′ = p‐tolyl and cyclohexyl). The molecular structure of tri(p‐tolyl)tin 3‐(4H‐1,2,4‐triazol‐4‐yl)benzoate determined by X‐ray crystallography displays that the tin atom adopts a five‐coordinate distorted trigonal bipyramidal geometry with the carboxyl oxygen atom and the nitrogen atom on 1‐position of triazole ring occupying the apical position. Moreover, this complex forms a polymeric chain by the intermolecular Sn–N interactions. All these complexes show good antifungal activities in vitro against Alternaria solani, Cercospora arachidicola, Gibberella zeae, Physalospora piricola, and Botrytis cinerea. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 20:411–417, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20566  相似文献   

15.
16.
A series of novel 1‐methyl‐3‐(4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles was synthesized in three steps from 5‐(1‐methyl‐1H‐indazol‐3‐yl)‐4‐phenyl‐2H‐1,2,4‐triazole‐3(4H)‐thiones. 5‐(1‐Methyl‐1H‐indazol‐3‐yl)‐4‐phenyl‐2H‐1,2,4‐triazole‐3(4H)‐thiones were converted into 1‐methyl‐3‐(5‐(methylsulfonyl)‐4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles upon methylation followed by treatment with aq. KMnO4. The reaction of 1‐methyl‐3‐(5‐(methylsulfonyl)‐4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles with Raney nickel resulted in desulphonylation to afford corresponding 1‐methyl‐3‐(4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles. All the new synthesized compounds were characterized by spectral techniques.  相似文献   

17.
New 4‐aryl‐5‐(1‐phenyl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,2,4‐triazol‐3‐thiones 3 have been synthesized by the intramolecular cyclization of 4‐aryl‐1‐(1‐phenyl‐5‐methyl‐1,2,4‐triazol‐4‐formyl)thiosemicarbazides 2 with an 8% NaOH solution, and then 3 reacted with ω‐bromo‐ω‐(1H‐1,2,4‐triazol‐1‐yl)acetophenone to afford ω‐[4‐aryl‐5‐(1‐phenyl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,2,4‐triazol‐3‐thio]‐ω‐(1H‐1,2,4‐triazol‐1‐yl)‐acetophenones 4 . The preliminary biological test showed that the representative compounds possess some anti fungal activities.  相似文献   

18.
Considering the frightening high level of mortality from cancer, studies of anticancer agents are vital nowadays. The 24 thioderivatives of 2‐alkyl(aryl)‐quinazolin‐4(3H)‐thiones and 20 thioderivatives of [1,2,4]triazolo[1,5‐c]quinazoline‐2‐thiones were synthesized and evaluated for preliminary in vitro anticancer activity with subsequent in silico QSAR analysis. The substance 18 had the best results inhibiting growth of eight cancer cell lines: CCRF‐CEM of leukemia; SF‐539, SNB‐75, and U251 of CNS cancer; 786, RXF393, and UO‐31 of renal cancer; and MDA‐MB‐231/ATCC of breast cancer (?31.50 – 47.41% of cell growth) with low procancer effect. Calculated QSAR‐models for CCRF‐CEM of leukemia, T‐47D and HS 578T of breast cancer, and mean cell growth demonstrated good rate of anticancer activity prediction (r2 = 0.7 – 0.8,  = 0.5 – 0.7).  相似文献   

19.
Thiazole 1 , when reacted with chloroacetyl chloride, afforded N‐(5‐acetyl‐4‐methylthiazol‐2‐yl) chloroacetamide 2 . It has been found that compound 2 reacted with α‐cyanocinnamonitrile derivatives 6a–c to afford reaction products 8a–c . Also, compound 2 coupled smoothly with benzenediazonium chloride afforded the phenylhydrazone 14 . Coupling of the sulfonium bromide 17 with diazotized aromatic amines or N‐nitrosoacetanilides afforded the arylhydrazones 20a,b . Treatment of 16 with 2‐cyanoethanethioamide afforded [4‐(2‐amino‐4‐methylthiazol‐5‐yl) thiazol‐2‐yl] acetonitrile 22 . © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:362–369, 2000  相似文献   

20.
A series of 2,5,6‐trisubstituted imidazo[2,1‐b][1,3,4]thiadiazoles via Mannich reaction of imidazo[2,1‐b][1,3,4]thiadiazoles with morpholine and formaldehyde were synthesized. Structures of all the newly synthesized compounds are well supported by spectral data such as IR, NMR, Mass, and Elemental analysis. Compound 3a has been confirmed by X‐ray diffraction studies. J. Heterocyclic Chem., (2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号