首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Masoumeh Bayat 《Polymer》2011,52(7):1645-1653
In order to develop multifunctional nanofibers, the electrical conductivity and magnetic properties of Fe3O4/carbon composite nanofibers have been examined. Polyacrylonitrile (PAN) is used as a matrix to produce magnetic composite nanofibers containing different amounts of magnetite (Fe3O4) nanoparticles. Electrospun composite nanofibers were thermally treated to produce electrically conductive and magnetically permeable composite carbon nanofibers. The composite nanofibers were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), Raman spectroscopy, four-point probe and Superconducting Quantum Interference Device (SQUID). Uniform nanofibers were obtained with successful transferring of magnetic properties of Fe3O4 into the as-spun composite nanofibers. The electromagnetic properties were tuned by adjusting the amount of Fe3O4 in the matrix and carbonization process. The electrical conductivity, magnetic moment and also magnetic hysteresis rise up by adding Fe3O4 and increasing carbonization temperature. The high surface area provided by the ultrafine fibrous structures, the flexibility and tuneable electromagnetic properties are expected to enable the expansion of the design options for a wide rage of electronic devices.  相似文献   

2.
《Ceramics International》2022,48(12):16892-16900
To solve pollution problems caused by electromagnetic waves, advanced three-dimensional (3D) honeycomb Ag/Ti3C2Tx hybrid materials were produced by a microwave hydrothermal method. The Ag/Ti3C2Tx hybrid materials retained their hollow sphere structure after the polymethyl methacrylate (PMMA) template was removed by annealing. The hybrid materials changed from hydrophilic to hydrophobic and exhibited cross-surface heat insulation and reflection-dominant electromagnetic interference shielding (EMIS) performance owing to their special honeycomb structure. This study innovatively explored the influence of different particle sizes of honeycomb holes on EMIS performance. In particular, the Ag/Ti3C2Tx 5 μm hybrid materials had an excellent average EMIS performance of 51.15 dB in the X-band and 56.64 dB in the Ku-band. The superior performance was due to conduction loss, interface polarization, multi-reflection, and scattering caused by the 3D porous structure of the Ag/Ti3C2Tx hybrid materials. In general, Ag/Ti3C2Tx hybrid materials with honeycomb structures retained the advantages of lightweight, hydrophobicity, and EMIS performance, illustrating the great application prospects of these materials in high-end electronic equipment.  相似文献   

3.
《Ceramics International》2020,46(5):6199-6204
Electromagnetic shielding (EMI) materials are becoming more and more important because of the increasingly serious radiation pollution. The preparation of high mechanical strength, ultrathin, lightweight, flexible materials with excellent EMI shielding performance have so far been elusive. Here, we try to prepare an ultrathin, lightweight and flexible film with excellent EMI shielding performance using one-dimensional aramid nanofibers (ANFs) and two-dimensional few-layered Ti3C2Tx through a simple filtration method. The ultimate tensile strength and strain of the film are up to 116.71 MPa and 2.64%. The EMI shielding effectiveness and the specific EMI shielding efficiency are 34.71 dB and 21971.37 dB cm2 g−1, which will be no recession after 1000 times bending. Our results show that a practical EMI shielding material with excellent performances has been successfully prepared, which will be widely applied in wearable electronics, robot joints, and precision instrument protection and so on.  相似文献   

4.
《Ceramics International》2016,42(8):9448-9454
A dense alumina fiber reinforced silicon carbide matrix composites (Al2O3/SiC) modified with Ti3Si(Al)C2 were prepared by a joint process of chemical vapor infiltration, slurry infiltration and reactive melt infiltration. The conductive Ti3Si(Al)C2 phase introduced into the matrix modified the microstructure of Al2O3/SiC. The refined microstructure was composed of conductive phase, semiconductive phase and insulating phase, which led to admirable electromagnetic shielding properties. Electromagnetic interference shielding effectiveness (EMI SE) of Al2O3/SiC and Ti3Si(Al)C2 modified Al2O3/SiC were investigated over the frequency range of 8.2–12.4 GHz. The EMI SE of Al2O3/SiC-Ti3Si(Al)C2 exhibited a significant increase from 27.6 to 42.1 dB compared with that of Al2O3/SiC. The reflection and absorption shielding effectiveness increased simultaneously with the increase of the electrical conductivity.  相似文献   

5.
The electrical properties of conducting polymers make them useful materials in a wide number of technological applications. In the last decade, an important effect on the properties of the conducting polymer when iron oxides particles are incorporated into the conductive matrix was shown. In the present study, films of polypyrrole were synthesized in the presence of magnetite particles. The effect of the magnetite particles on the structure of the polymer matrix was determined using Raman spectroscopy. Mass variations at different concentrations of Fe3O4 incorporated into the conducting matrix were also measured by means of quartz crystal microbalance. Additionally, the changes in the resistance of the films were evaluated over time by electrochemical impedance spectroscopy in solid state. These results show that the magnetite incorporation decreases polymeric film resistance and Raman experiments have evidenced that the incorporation of magnetite into polymeric matrix not only stabilizes the polaronic form of the polypyrrole, but also preserves the polymer from further oxidation.  相似文献   

6.
Conductive polymeric based composites were derived from ethylene vinyl acetate rubber filled with Vulcan XC‐72, short carbon fiber (SCF), and their blends. The electromagnetic interference (EMI) shielding effectiveness (SE), return loss, and reflection coefficient were studied. The measurements of the SE of the composites were carried out in two different frequency ranges of 100–2000 MHz and 8–12 GHz (X band). It was observed that the SE of the composites was frequency dependent and it increased with increasing frequency. The increasing of filler loading also enhanced the SE of the composites. The 100% SCF filled composites showed a higher SE compared to that of the filler blend or purely carbon black filled composites. The correlation between the SE and bulk conductivity of various composites was also discussed. The compromise between EMI SE, electrical conductivity, and mechanical properties was obtained when the composites contained both types of filler like particulate carbon black and SCF. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1601–1608, 2001  相似文献   

7.
《Ceramics International》2017,43(15):12221-12231
Carbon/ceramic composites are promising candidates as electromagnetic interference (EMI) shielding materials used at various harsh environments. The aim of present work is to prepare and investigate two kinds of composite ceramics reinforced with carbon nanowires (CNWs) and nanowires-nanotubes (CNWs-CNTs) hybrid, respectively. Results indicate that CNWs is highly curved and multi-defected, and CNWs-CNTs hybrid shows the best crystal structure at an optimal catalyst concentration of 5 wt%. When CNWs accounts for 5.15 wt%, the total shielding effectiveness (SE) of CNWs/Si3N4 reaches 25.0 dB with absorbed SE of 21.3 dB, meaning that 99.7% incident signal can be blocked, while it reaches 25.4 dB for CNWs-CNTs/Si3N4 as the carbon loading only increasing to 3.91 wt%. By contrast, CNWs/Si3N4 exhibits better electromagnetic attenuation capability with stronger absorption, mainly due to the unique microstructure of CNWs. Both of two composite ceramics have great potential to be designed as structural and multi-functional materials.  相似文献   

8.
《Ceramics International》2019,45(10):12672-12676
Macroscopic parallel aligned non-woven carbon fibers were incorporated into Al2O3 composites in this study to evaluate the contribution of multiple reflections to the total electric magnetic interference (EMI) shielding. Results indicate that parallel aligned non-woven carbon fiber layers contribute significantly to the total EMI shielding effectiveness (SET) of Al2O3 composites by largely enhancing the EMI absorption, and seven parallel aligned thin non-woven carbon fiber layers finally make the almost microwave-transparent Al2O3 an excellent EMI shielding material with an EMI SET as high as 29–32 dB in the X-band frequency range. The volume fraction of carbon fibers in Al2O3 composites with seven carbon fiber layers is calculated to be only 0.5%, and therefore the EMI SE enhancement efficiency by parallel aligned large non-woven carbon fiber layers is much higher than other highly conducting nano fillers. It validates the significance of multiple reflections in achieving high EMI shielding properties in ceramic composites and provides an instructive approach to design efficient EMI shielding ceramic composites.  相似文献   

9.
The effects of hybrid fillers on the electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of polyamide 6 (PA6)/polypropylene (PP) immiscible polymer blends were investigated. Carbon black (CB) and steam exploded sisal fiber (SF) were used as fillers. CB was coated on the surface of SF, and this was exploded by water steam to form carbon black modified sisal fiber (CBMSF). CB/SF/PA6/PP composites were prepared by melt compounding, and its electromagnetic SE was tested in low‐frequency and high‐frequency ranges. We observed that SF greatly contributed to the effective decrease in the percolation threshold of CB in the PA6/PP matrix and adsorbed carbon particles to form a conductive network. Furthermore, an appropriate CB/SF ratio was important for achieving the best shielding performance. The results indicate that CBMSF was suitable for use as electronic conductive fillers and the CB/SF/PA6/PP composites could be used for the purpose of EMI shielding. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42801.  相似文献   

10.
Effective electromagnetic interference (EMI) shielding requires materials with high permittivity. The current study reports 3D printed polymer-derived SiOC ceramics (PDC) modified with SiC nanowires (SiCnw) exhibiting both high real and imaginary parts of permittivity within X-band. SEM results indicated that a large number of pores and cracks exist in the SiOC, and twinned SiCnw were uniformly grown among them along with the existence of graphite microcrystals when the sintering temperature was 1500 ℃. The real part of permittivity ranged from 16.6 to 28.9 while the imaginary part from 31.7 to 34.2 in X-band. The EMI total shielding effectiveness (SET) of the ceramics could reach 34.7 dB with absorption loss (SEA) of 29.3 dB and reflection loss (SER) of 5.4 dB. Meanwhile, the 3D printed PDC-SiOC ceramics at 900 ℃ sintering temperature possess certain mechanical properties with the magnitude of compressive strength being 12.57 MPa.  相似文献   

11.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

12.
With the aim of exploring the excellent properties of multi-walled carbon nanotubes (MWNTs) in modern composite technologies, various macrostructures of nanotubes have been developed from one to three dimensions, e.g. fibers, networks, sheets (buckypapers) and pellets. The MWNT sheets discussed here were fabricated by a vacuum filtration procedure, a process that has potential for large-scale manufacturing. In order to further enhance the transport properties of MWNT sheets by reducing the contact resistance between nanotubes, highly conductive silver nanoparticles were introduced by an in situ photochemical reduction method. TEM analysis showed that highly acid-treated MWNTs dispersed in the presence of Triton X-100 (TX-100) under UV light was a controllable processing method for preparation of a narrow size distribution of silver nanoparticles that were anchored onto the nanotubes. The free-standing MWNT/Ag nanohybrid sheets possessed a sharp increase in electrical conductivity from 27.7 to 40.0 S/cm, which consequently led to a much improved electromagnetic interference shielding effectiveness (SE). In principle, the SE could reach 3500 dB/cm with a thickness of 110 μm, which matched the experimental results well. In addition, the nanohybrid sheets are robust and can be folded with a thickness of 30 μm, which opens a promising way to integrate MWNT sheets into conventional composite laminates.  相似文献   

13.
Porous Fe3O4/C microspheres, which were Fe3O4 nanocrystals (~8?nm) embedded in an open nanostructured carbon network, were successfully synthesized via a facile hydrothermal process. The porous Fe3O4/C microspheres possessed many distinct attributes that facilitate efficient broadband electromagnetic wave absorption (EMWA). EMWs were attenuated through multiple reflections and absorption in the 3D interconnected porous structure of the microspheres; these processes collectively improved the interaction between the EMWs and the absorber. Additionally, the carbon network and embedded Fe3O4 nanoparticles caused significant dielectric losses and magnetic losses, respectively, which also enhanced EMWA. The EMWA characteristics of the microspheres could be precisely tuned via changing the carbon content to achieve optimized impedance matching. Porous Fe3O4/C microspheres with a 71.5?wt% carbon content displayed particularly impressive EMWA properties: a maximum reflection loss (RL) value of ??31.75 across broad band frequencies in the range of 7.76–12.88?GHz (RL < ?10?dB) at an absorber thickness of 3.0?mm. These excellent EMWA properties may be attributed to both dielectric loss (carbon) and magnetic loss (Fe3O4). Additionally, the 3D interconnected porous structure of the Fe3O4/C microspheres is especially favorable for impedance matching.  相似文献   

14.
《Ceramics International》2022,48(22):33412-33417
Ti3C2Tx MXene has attracted extensive attention in the field of electromagnetic (EM) protection over recent years. Multilayer Ti3C2Tx (M-Ti3C2Tx), as an intermediate product of MXene ultra-thin structure, has potential advantages in the field of EM protection. Herein, the M-Ti3C2Tx was obtained by HCl/LiF etching Ti3AlC2. The microwave absorption (MA) and electromagnetic interference (EMI) shielding performance of Ti3AlC2 and M-Ti3C2Tx were compared. The mechanism research of MA and EMI shielding indicates that the construction of local conductive network plays a leading role in the EM wave attenuation. The sample with 30% M-Ti3C2Tx display RLmin of ?50.26 dB, and corresponding bandwidth of 4.64 GHz at the thickness of 1.7 mm. Especially, the metastructure based on the EM parameters of M-Ti3C2Tx/wax exhibits ultra-wide bandwidth (15.54 GHz). Our research will provide a basis for the design of MXene-based EM protection performance.  相似文献   

15.
《Ceramics International》2022,48(17):24898-24905
MXene films promise potential electromagnetic interference (EMI) shielding materials, but poor scalable processability, environmental instability, and weak mechanical properties severely restrict their applications. Herein, we engineer the large-area, high-performance, and compact nacre-like MXene-based composite films through cooperative co-assembly of Ti3C2TX MXene and reduced graphene oxide (rGO) in the presence of polyvinyl alcohol (PVA). The resulting MXene-rGO-PVA composite films benefit from enhanced bonding strength and extra chain bridging effect of linear PVA molecules enriched with hydroxyl groups. Therefore, the composite film achieves high tensile strength (~238 MPa) and toughness (~1.72 MJ m?3) while having high conductivity of ~32 S cm?1. A significant EMI shielding effectiveness (41.35 dB) is also demonstrated, with an excellent absolute shielding effectiveness of ~20,200 dB cm2 g?1 at only 12-μm thickness. Moreover, due to the synergistic effect of multiple components, the composite films maintain a stable EMI shielding performance in harsh environments (sonication, hot/cold annealing, and acid solution) with mechanical properties that fluctuate only within 10% compared to the original film. More importantly, commercial polyethylene terephthalate release liner can be applied for the film coating, facilitating continuous roll-to-roll production of large-area films and future applications.  相似文献   

16.
The manufacturing of pure polyacrylonitrile (PAN) fibers and magnetic PAN/Fe3O4 nanocomposite fibers is explored by an electrospinning process. A uniform, bead-free fiber production process is developed by optimizing electrospinning conditions: polymer concentration, applied electric voltage, feedrate, and distance between needle tip to collector. The experiments demonstrate that slight changes in operating parameters may result in significant variations in the fiber morphology. The fiber formation mechanism for both pure PAN and the Fe3O4 nanoparticles suspended in PAN solutions is explained from the rheologial behavior of the solution. The nanocomposite fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectrophotometer, and X-ray diffraction (XRD). FT-IR and XRD results indicate that the introduction of Fe3O4 nanoparticles into the polymer matrix has a significant effect on the crystallinity of PAN and a strong interaction between PAN and Fe3O4 nanoparticles. The magnetic properties of the nanoparticles in the polymer nanocomposite fibers are different from those of the dried as-received nanoparticles.  相似文献   

17.
In order to enhance the dielectric and electromagnetic interference shielding (EMI) properties, the SiC/C composite ceramics were fabricated by pyrolysis of ferrocene-modified polycarbosilane. The microstructure evolutions, dielectric properties, EMI and microwave absorption properties of SiC/C composite ceramics were investigated. The increases of both ferrocene contents and annealing temperatures led to the increases of crystallizations of SiC and carbons. Crystallized carbons including carbon nanowires, turbostratic carbons, onion-like carbons and graphene-like carbons were obtained in the materials. The carbon nanowires were longest when the 5 wt.% ferrocene-modified polycarbosilane was annealed at 1250 °C. These carbons played a more important role than SiC in the increases of dielectric and EMI properties. The average real and imaginary permittivities of materials increased from 4.4 and 0.7 to 38.9 and 39.6, respectively. The materials exhibited high total shielding effectiveness, high absorption shielding effectiveness and low reflection shielding effectiveness, which were 36.6, 30.1 and 6.5 dB, respectively.  相似文献   

18.
Nanostructured carbon-based polymeric nanocomposites are gaining research interest because of their cost-effectiveness, lightweight, and robust electromagnetic interference (EMI) shielding performance. Till now, it is a great challenge to design and fabricate highly scalable, cost-effective nanocomposites with superior EMI shielding performance. Herein, highly scalable EMI shielding material with tunable absorbing behaviors comprising of low-budget ketjen black (K-CB) reinforced poly(methyl methacrylate) (PMMA) nanocomposites have been prepared using simple solvent assisted solution mixing technique followed by hot compression technique. The morphological investigation revealed the homogeneous distribution of K-CB and strong interfacial interaction in PMMA matrix, which validated the strong reinforcement and other intriguing properties of the nanocomposites. The PMMA nanocomposites showed a low percolation threshold (2.79 wt%) and excellent electrical conductivity due to the formation of 3D conductive network like architecture within the polymer matrix. Specifically, the 10 wt% K-CB nanocomposite possessed a superior EMI shielding performance of about 28 dB for X-band frequency range. Further, a huge change in EMI shielding performance of PMMA nanocomposites is observed with varying thickness. The brand new K-CB decorated PMMA nanocomposites are expected to open the door for next-generation cost-effective EMI shielding materials for academic and industrial applications.  相似文献   

19.
Polyvinyl alcohol (PVA) was used as a hydrogen bond functionalizing agent to modify multi-walled carbon nanotubes (CNTs). Nanoparticles of Fe3O4 were then formed along the sidewalls of the as-modified CNTs by the chemical coprecipitation of Fe2+ and Fe3+ in the presence of CNTs in an alkaline solution. The structure and electrochemical performance of the Fe3O4/CNTs nanocomposite electrodes have been investigated in detail. Electrochemical tests indicated that at the 145th cycle, the CNTs-66.7 wt.%Fe3O4 nanocomposite electrode can deliver a high discharge capacity of 656 mAh g−1 and stable cyclic retention. The improvement of reversible capacity and cyclic performance of the Fe3O4/CNTs nanocomposite could be attributed to the nanosized Fe3O4 particles and the network of CNTs.  相似文献   

20.
《Ceramics International》2021,47(21):29995-30004
Novel and highly effective electromagnetic interference (EMI) shielding materials are desirable to attenuate unwanted electromagnetic radiation or interference produced by electrical communication devices. Here, functional Ti3C2Tx@Ni particles with a core@shell and sandwich like structure were fabricated using the facile electroless plating technique. The core@shell structured Ti3C2Tx@Ni consists of a Ti3C2Tx core and a Ni shell. In the core, thin Ni layers are sandwiched in between Ti3C2Tx flakes. EMI shielding effectiveness (SE) values of Ti3C2Tx@Ni/wax composites increased with increasing Ti3C2Tx@Ni content. The average EMI SE value of 60 wt% Ti3C2Tx@Ni/wax composite was 43.12 dB, increased by 73% as compared with 24.93 dB for the same content of pristine Ti3C2Tx in wax in the frequency range 2–18 GHz. An average EMI SE of 74.14 dB was achieved in the 80 wt% Ti3C2Tx@Ni/wax. The enhanced EMI shielding performance should be ascribed to the synergic effect of the absorption loss of the Ti3C2Tx core and the magnetic loss of the Ni shell and the inner Ni layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号