首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using phosphoryl chloride as a substrate, a family of 1,3,2‐bis(arylamino) phospholidine, 2‐oxide of the general formula ; (X=Cl, 6a ; X=NMe2, 1b ; X=N(CH2C6H5)(CH3), 2b ; X=NHC(O)C6H5, 3b ; X=4Me‐C6H4O, 4b ; X=C6H5O, 5b ; X=NHC6H11, 6b ; X=OC4H8N, 7b ; X=C5H10N, 8b ; X=NH2, 9b ; X=F, 10b and Ar=4Me‐C6H4) was prepared and characterized by 1H, 19F, 31P and 13C NMR and IR spectroscopy, and elemental analysis. A general and practical method for the synthesis of these compounds was selected. The structures of 6a and 2b were determined by single‐crystal X‐ray diffraction techniques. The low temperature NMR spectra of 2b revealed the restricted rotation of P‐N bond according to two independent molecules in crystalline lattice.  相似文献   

2.
Infrared and Raman Spectroscopic Investigations on the Organosubstituted Silicon Hydrides (XCH2)(CH3)2SiH (X = Cl, Br, J), X(YO)2SiH (X = CH2, C2H5/Y = CH3, C2H5 … tert.-C4H9), (C6H5)2SiH2 and C6H5SiH3 Typical band splittings, specially for the SiH stretching vibration, are shown in the infrared and Raman spectra of the silicon hydrides (XCH2)(CH3)2SiH (X = Cl, Br, J), and X(YO)2SiH (X = CH3, C2H5/Y = CH3, C2H5 … tert.-C4H9). The cause of this behavior is in all probability the existence of rotational isomers. Raman polarization measurements at organosubstituted silicon di- and trihydrides demonstrate the accidental degeneracy of the SiH valence vibrations.  相似文献   

3.
Thremogravimetric (TG) studies of a new series of organotin(IV) carboxylates of the general formula RnSnL4-n (where R = CH3, C2H5, C4H9, C6H5, C6H11 and C8H17, n = 2, 3 and L = para-methoxyphenylethanoate anion) have been carried out. Horowitz and Metzger method has been used to calculate thermokinetic parameters. It has been found that diorganotin dicarboxylates have larger activation energy than those of corresponding triorganotin carboxylates. Furthermore, the activation energy, Gibb’s free energy, entropy and enthalpy of diorganotin compounds shows the following trend, (CH3)2SnL2 < (C2H5)2SnL2 < (C4H9)2SnL2 < (C8H17)2SnL2. This is attributed to steady increase in chain length of the alkyl groups. However, triorganotin compounds do not show such behavior.  相似文献   

4.
A new series of platinum(II) complexes with tridentate ligands 2,6‐bis(1‐alkyl‐1,2,3‐triazol‐4‐yl)pyridine and 2,6‐bis(1‐aryl‐1,2,3‐triazol‐4‐yl)pyridine (N7R), [Pt(N7R)Cl]X ( 1 – 7 ) and [Pt(N7R)(C?CR′)]X ( 8 – 17 ; R=n‐C4H9, n‐C8H17, n‐C12H25, n‐C14H29, n‐C18H37, C6H5, and CH2‐C6H5; R′=C6H5, C6H4‐CH3p, C6H4‐CF3p, C6H4‐N(CH3)2p, and cholesteryl 2‐propyn‐1‐yl carbonate; X=OTf?, PF6?, and Cl?), has been synthesized and characterized. Their electrochemical and photophysical properties have also been studied. Two amphiphilic platinum(II)? 2,6‐bis(1‐dodecyl‐1,2,3‐triazol‐4‐yl)pyridine complexes ( 3‐Cl and 8 ) were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air/water interface. These LB films were characterized by the study of their surface‐pressure–molecular‐area (π–A) isotherms, XRD, and IR and polarized‐IR spectroscopy.  相似文献   

5.
Synthesis of Fluoro-λ5-monophosphazenes and Fluoro-1,3-diaza-2λ5,4λ5-diphosphetidines by Means of the Staudinger Reaction 35 Tetrafluoro- and 2 difluorodiaza-diphosphetidines as well as 4 difluoro- and 30 monofluoro-λ5-monophosphazenes were prepared by the Staudinger reaction between tervalent phosphorus fluorides, RnPF3?n (n = 1, 2; R = R2N, (CH2)5N, O(CH2)4N, RO, (CH2O)2, alkyl, aryl) and phenylazides, X? C6H4N3 (X = H, 4-CH3, 4-Cl, 4-Br, 4-NO2, 3-NO2). PF3 does not react with phenylazide The influence of substituents on the structure of the reaction products is discussed. Kinetic measurements allowed to determine the constants λPI of the substituents (CH2)5N, O(CH2)4N and R(C6H5)N (R = CH3, C2H5, n-C4H9).  相似文献   

6.
Inhaltsübersicht. Triorganoantimon- und Triorganobismutdicarboxylate R3M[O2C(CH2)n-2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) wurden durch Reaktionen von R3Sb(OH)2 (R = CH3, C6H11, 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) bzw. R3BiCO3 mit den entsprechenden fünfgliedrigen heterocyclischen Carbonsäuren 2-C4H3X(CH2)nCOOH dargestellt. Auf der Basis schwingungsspektroskopischer Daten wird für alle Verbindungen eine trigonal bipyramidale Umgebung vom M (zwei O-Atome von einzähnigen Carboxylatliganden in den apikalen, drei C-Atome von R in den äquatorialen Positionen) vorgeschlagen, ferner eine schwache Wechselwirkung zwischen O(=C) jeder Carboxylatgruppe und M. Die Kristallstrukturbestimmung von (C6H5)3Sb(O2C–2-C4H3S)3 stützt diesen Vorschlag. Die Verbindung kristallisiert triklin [Raumgruppe P$1; a = 891,8(14), b = 1058,2(12), c = 1435,6(9) pm, α = 68,53(8), β = 85,47(9), γ = 85,99(11)°; Z = 2; d(ber.) = 1,607 Mg m–3; V(Zelle) = 1255,6 Å3; Strukturbestimmung anhand von 3947 unabhängigen Reflexen (Fo > 3σ(F2o)), R(ungewichtet) = 0,037]. Sb bindet drei C6H5-Gruppen in der äquatorialen Ebene [mittlerer Abstand Sb–C: 211,1(5)pm] und zwei einzähnige Carboxylatliganden in den apikalen Positionen einer verzerrten trigonalen Bipyramide [mittlerer Abstand Sb–O: 212,0(4) pm]. Aus den relativ kurzen Sb – O(=C)-Abständen [274,4(4) und 294,9(4) pm] und aus der Aufweitung des dem O(=C)-Atom nächsten äquatorialen C–Sb–C-Winkels auf 145,9(2)° [andere C-Sb-C-Winkel: 104,4(2), 109,5(2)°] wird auf schwache Sb–O(=C)-Koordination geschlossen. Schließlich wird eine Korrelation zwischen dem (+, –)I-Effekt des Organoliganden R an M (M = Sb, Bi) und der Stärke der M–O(=C)-Koordination in den Dicarboxylaten R3M[O2C(CH2)n–2-C4H3X]2 vorgeschlagen. Triorganoanümony and Triorganobismuth Derivatives of Carbonic Acids of Five-membered Heterocycles. Crystal and Molecular Structure of (C6H5)3Sb(O2C–2-C4H3S)2 Triorganoantimony- and triorganobismuth dicarboxylates R3M[O2C(CH2)n–2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) have been prepared by reaction of R3Sb(OH)2 (R = CH3, C6H11; 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) or R3BiCO3 with the appropriate five-membered heterocyclic carboxylic acid. From vibrational data for all compounds a trigonal bipyramidal environment around M (two O atoms of unidendate carboxylate ligands in apical, three C atoms (of R) in equatorial positions) is proposed and also an additional weak interaction of O(=C) of each carboxylate group and M. The crystal structure determination of Ph3Sb(O2C–2-C4H3S)2 gives additional prove to this proposal. It crystallizes triclinic [space group P$1; a = 891.8(14), b = 1058.2(12), c = 1435.6(9) pm, α = 68.53(8), β = 85.47(9), γ = 85.99(11)°; Z = 2; d(calc.) = 1.607 Mg m–3; Vcell = 1255.6 Å3; structure determination from 3 947 independent reflexions (Fo > 3σ(F2o)), R(unweighted) = 0.037]. Sb is bonding to three C6H5 groups in the equatorial plane [mean distance Sb–C: 211.1(5) pm] and two unidentate carboxylate ligands in the apical positions of a distorted trigonal bipyramid [mean distance Sb–O: 212.0(4) pm]. From the relatively short Sb–O(=C) distances [274.4(4) and 294.9(4) pm] and from the enlarged value of the equatorial C–Sb–C angle next to the O(=C) atom [145.9(2)°; other C–Sb–C angles: 104.4(2), 109.5(2)°] additional weak Sb–O(=C) coordination is inferred. Finally a correlation between the (+, –) I-effect of the organic ligands It at M and the strength of the M–O = C interaction is suggested.  相似文献   

7.
New Methods for Synthesis of Organohalogenostibanes Organohalogenostibanes RSbX2 (R = CH3, C6H5; X = Cl, Br) and R2SbX (R = C6H5; X = Cl) are received in good yields by alkylation or arylation of the corresponding antimony halides with Pb(CH3)4, Sn(CH3)4, Sb(CH3)3, or Sb(C6H5)3. These methods are better than those, described in the literature for preparation of the compounds.  相似文献   

8.
The formation of the compound RSnX(acac)2 (acac = 2,4-pentanedionato) by reaction of bis(2,4-pentanedionato)tin(II) on a halide RX with R = CH3, C2H5, C4H9, C6H5, CH2I, (C6H5)3SnCH2, (C2H5)3SnCH2 and X = I, Br has been studied by polarography. At 25°C, it is in fact an equilibrium whose constant has been measured. The intermediate formation of the ion-pair [RSn(acac)2+X?] has allowed us to explain the experimental results.  相似文献   

9.
The asymmetric reduction of phenylalkylketones p-X-C6H4COR (X = H, R = C2H5, 1C3H7, 1C4H9 and R = C2H5, X = CH3, OCH3, Cl, CF3) with chiral aromatic Grignard reagents p-YC6H4-CH(C2H5) CH2MgCl (Y = H, OCH3, CF3) give optically active phenylalkylcarbinols. The absolute configuration and the enantiomeric excess depends on electronic effects of substituents carried by the organomagnesium reagent and/or ketone.  相似文献   

10.
The stepwise reaction of Me2SiCl2 with K[C5H3 tBuMe‐3] or Li[C9H7] and then with K[C9H6CH2CH2‐ NMe2‐1] followed by double deprotonation with NaH or LiBu, yields the two dimethylsilicon bridged cyclopentadienyl‐indenyl and indenyl‐indenyl donor‐functionalized ligand systems K2[(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 1 ), and Li2[(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 2 ), respectively. Treatment of 1 with YCl3(THF)3, SmCl3(THF)1.77, TmI3(DME)3, and LuCl3(THF)3 gives the mixed ansa‐metallocenes [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LnX (X = Cl, Ln = Y ( 3 ), Sm ( 4 ), Lu ( 5 ); X = I, Ln = Tm ( 6 )), respectively. The reaction of 2 with LuCl3(THF)3 yields [(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LuCl ( 7 ). Compound 4 reacts with LiMe to give the corresponding alkyl derivative [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]Sm(CH3) ( 8 ). The new complexes were characterized by elemental analyses, MS spectrometry, and NMR spectroscopy. The molecular structures of 5 and 6 were determined by single crystal X‐ray diffraction.  相似文献   

11.
Complexes containing tetrahalotelluracyclopenzane anions of the type (R4M2)+[C4H8TeX2X′2]2- (where R = CH3, C2H5, C3H7, C4H9, C6H13, C7H15 or C6H5; M = N, P, As or Sb; X = Cl, Br, or I and X′ = I, Cl, Br, NCO, NCS, or N3) have been synthesized, (i) by the interaction of 1-telluracyclopentane 11 diiodide with the corresponding tetraorganoammonium, -phosphonium, -arsonium, or -stibonium halides in nonaqueous solvents and (ii) via halogen exchange between complex anions and silver or alkali metal halides. The second method also yielded several pseudohalide and mixed halide-pseudohalide derivatives. The ionic nature of the new complex anions has been established by conductance and molecular weight measurements. NMR and IR spectra of some of the derivatives are discussed.  相似文献   

12.
Some new types of mononuclear derivatives, AlL(1–4)L(1–4)H ( 1a–1d ) of aluminium were synthesized by the reaction of Al(OPri)3 and LH2 [XC(NYOH)CHC(R)OH], X = CH3, Y = (CH2)2, R = CH3(L1H2); X = C6H5, Y = (CH2)2, R = CH3(L2H2); X = CH3, Y = (CH2)3, R = CH3(L3H2); X = C6H5, Y = (CH2)3, R = CH3(L4H2) in 1:2 molar ratio in refluxing benzene. Reactions of AlL(1–4)L(1–4)H with hexamethyldisilazane in 2:1 molar ratio yielded some new ligand bridged heterodinuclear derivatives AlL(1–4)L(1–4)SiMe3 ( 2a – 2d ). All these newly synthesized derivatives were characterized by elemental analysis and molecular weight measurements. Tentative structures were proposed on the basis of IR and NMR spectra (1H, 13C, 27 Al and 29Si) and FAB‐mass studies. Schiff base ligands and their mono‐ and heterodi‐nuclear derivatives with aluminium have been screened for fungicidal activities. These compounds showed significant antifungal activity against Aspergillus niger and A. flavus. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Polysulfonyl Amines. XLVI. Molecular Adducts of Di(organosulfonyl)amines with Dimethyl Sulfoxide and Triphenylphosphine Oxide. X-Ray Structure Determination of Di(4-fluorobenzenesulfonyl)amine-Dimethyl Sulfoxide(2/1) From equimolar solutions of the respective components in CH2Cl2/petroleum ether, the following crystalline addition compounds were obtained: (X? C6H4SO2)2NH …? OS(CH3)2, where X = H, 4? CH3, 4? Cl, 4? Br, 4? I, 4? NO2 or 3? NO2; [(4? F? C6H4SO2)2NH]2 · (OS(CH)3)2 ( 8 ); (4? I? C6H4SO2)2NH · OP(C6H5)3. A (2/1) complex of (4? F? C6H4SO2)2NH with OP(C6H5)3 could not be isolated. The solid-state structure of the (2/1) compound 8 is compared with the known structure of the (1/1) complex (CH3SO2)2NH · OS(CH3)2. The crystallographic data for 8 at ?95°C are: monoclinic, space group C2/c, a = 2 369.9(13), b = 1 006.8(4), c = 2 772.6(13) pm, β = 110.71(4)°, U = 6.187 nm3, Z = 8. Two N? H …? O hydrogen bonds with N …? O 275 and 280 pm connect the disulfonylamine molecules with the dimethyl sulfoxide molecule. The O atom of the latter has a trigonal-planar environment consisting of the S atom and the two hydrogen bond H atoms.  相似文献   

14.
The rates of reactions of para‐ and meta‐substituted benzylamines with benzyl bromide were measured using conductivity technique in methanol medium. The reaction followed a total second‐order path. The end product of the reaction is identified as dibenzylamine (X‐C6H4CH2NHCH2C6H5) (where X = 4‐OCH3, 4‐CH3, H, 4‐Cl, 4‐CF3, 3‐CF3, 4‐NO2). Electron‐withdrawing groups such as chloro, trifluoromethyl, and nitro in the benzylamine moiety decrease the rate of the reaction, whereas the electron‐donating groups, such as methoxy and methyl, increase the rate compared to the unsubstituted compound. A mechanism involving formation of an SN2‐type transition state between the amine nucleophiles and the benzyl bromide and its subsequent decomposition is proposed. Hammett's reaction constant ρ of the reaction decreases with an increase in temperature. Activation parameters were calculated and discussed.  相似文献   

15.
Synthesis and Molecular Structure of the Binuclear tert-Butyliminovanadium(IV) Complexes [(μ-NtC4H9)2V2(CH2CMe3)2X2] (X = OtC4H9, CH2CMe3) Syntheses of the neopentylvanadium(V) compounds tC4H9N?V(CH2CMe3)3?n(OtC4H9)n (n = 0 ( 7 ), 1 ( 6 ), 2) are described. 6 and 7 decompose by irradiation splitting off neopentane and yielding the binuclear diamagnetic neopentylvanadium(IV) complexes [(μ-NtC4H9)2V2(CH2CMe3)2X2] [X = OtC4H9 ( 8 ), CH2CMe3 ( 11 )]. All compounds obtained are characterized by 1H and 51V NMR spectroscopy. 8 has been found by X-ray diffraction analysis to be a binuclear complex with bridging tert-butylimino ligands and a vanadium—vanadium single bond. The complexes tC4H9N?V(CH2C6H5)(OtC4H9)2 and [(μ-NtC4H9)2V2(CH2SiMe3)2(OtC4H9)2] ( 10 ) have been also prepared; the crystal structure of 8 and 10 are nearly identical.  相似文献   

16.
The complexes Cr(CO)5(R′SNR2) [R′ = CH3; NR2 = N(CH3)2, N(C4H8)O. R′ = C6H5; NR2 = N(CH3)2, N(C4H4)O, N(CH2? C6H5)2, N(C6H11)2] have been prepared by reaction of the sulfenamides with Cr(CO)5 · THF and characterized by analytical and spectroscopic methods. The IR, 1H-NMR, UV-VIS, and mass spectra of the complexes support the coordination of the sulfenamide via the sulfur atom. π-acceptor abilities of sulfenamides in the prepared coordination compounds, determined from IR and UV-VIS data, were compared with those of other divalent sulfur conpounds.  相似文献   

17.
Cyclopentadienyl cobalt complexes (η5‐C5H4R) CoLI2 [L = CO,R=‐COOCH2CH=CH2 (3); L=PPh3, R=‐COOCH2‐CH=CH2 (6); L=P(p‐C6H4O3)3, R = ‐COOC(CH3) = CH2 (7), ‐COOCH2C6H5 (8), ‐COOCH2CH = CH2 (9)] were prepared and characterized by elemental analyses, 1H NMR, ER and UV‐vis spectra. The reaction of complexes (η5‐C5H4R)CoLI2 [L= CO, R= ‐COOC(CH3) = CH2 (1), ‐COOCH2C6H5(2); L=PPh3, R=‐COOC (CH3) = CH2 (4), ‐COOCH2C6H5 (5)] with Na‐Hg resulted in the formation of their corresponding substituted cobaltocene (η5‐C5H4R)2 Co[R=‐COOC(CH3) = CH2 (10), ‐COOCH2C6H5 (11)]. The electrochemical properties of these complexes 1–11 were studied by cyclic voltammetry. It was found that as the ligand (L) of the cobalt (III) complexes changing from CO to PPh3 and P(p‐tolyl)3, their oxidation potentials increased gradually. The cyclic voltammetry of α,α′‐substituted cobaltocene showed reversible oxidation of one electron process.  相似文献   

18.
Under acid or base catalysis, di(2-alkoxycarbonylethyl)tin dichlorides of various R groups, (ROCOCH2CH2)2SnCl2, can be prepared conveniently in high yield by alcoholysis of (CH3OCOCH2CH2)2SnCl2 in various alcohols, ROH (R = C2H5, C4H9, iso-C4H9, C5H11, C6H5CH2, C4H9CH(C2H5)CH2). When excess acid or base is present in the aqueous solution, (ROCOCH2CH2)2SnCl2 eliminate ROH and precipitate as C6H8O4Sn regardless of the R group. C6H8O4Sn can be converted into various (ROCOCH2CH2)2SnCl2 derivatives on dissolving in alcoholic HCl solutions.  相似文献   

19.
Carbon-13 chemical shifts and the POC, POCC, PNC and PNCC coupling constants of 18 compounds containing the amine moiety, and with the general formula Y2P(X)NHR [Y=C2H5O, C6H5O, CH2O, Y2=1,2-dioxybenzene; X = O or S; R = H, CH3, C2H5, PhCH2CH2, (CH3)2CH, C(CH3)3, C6H11, C6H5, C6H5NH] have been determined. The Y2P(X) group shows a sterically induced effect on the amine moiety; the 13C chemical shift of the Y group is, however, almost unaffected on replacing P(O) by a P(S) group.  相似文献   

20.
Synthetic routes for the preparation of 3-alkyl-6-phenyl-4(3H)-pteridinones 6 and their corresponding 8-oxides 5 (R = CH3, C2H5, (CH2)2CH3, (CH2)3CH3, CH(CH3)C2H5, CH(CH3)2 and CH(C2H5)CH2OCH(OC2H5)2 are described and their reactivities towards xanthine oxidase from Arthrobacter M-4 are determined. Only the 3-methyl derivative of 6-phenyl-4(3H)-pteridinone and its 8-oxide i. e. 6a and 5a are found to be substrates although their reactivities are still very low. Oxidation takes place at C-2 of the pteridinone nucleus. All the 3-alkyl derivatives are less tightly bound to the enzyme than 6-phenyl-4(3H)-pteridinone. Introduction of the N-oxide at N-8 considerably lowers the binding of the substrates. Inhibition studies have revealed that 3-methyl-6-phenyl-4(3H)-pteridinone ( 6a ) is a non-competitive inhibitor with a Ki-value of 47 μM and the 3-ethyl derivative ( 6b ) an uncompetitive one with a Ki-value of 19.6 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号