首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objectives of this study were to identify a plant extract that would improve stratum corneum functions and to elucidate the mechanism(s) involved. Based on the information that stratum corneum functions depend on the level of ceramide in the stratum corneum, we identified a Eucalyptus extract that was able to increase the level of ceramide in human keratinocytes in culture and in human stratum corneum and that improves the stratum corneum water holding and barrier functions. Addition of the Eucalyptus extract to human keratinocytes in culture increased the level of ceramide in a dose-dependent manner and also increased the biosynthesis of ceramide, glucosylceramide and sphingomyelin. Topical application of the Eucalyptus extract on the dry skin of human subjects induced by acetone and diethylether treatment resulted in a significant increase in ceramide level in the stratum corneum, a significant improvement in its water-holding function and an improvement in its barrier function. The addition of macrocarpal A, one of the main components of the Eucalyptus extract, to human keratinocytes in culture increased the level of ceramide and the mRNA expression of serine palmitoyltransferase, acid sphingomyelinase, neutral sphingomyelinase, glucosylceramide synthase and glucocerebrosidase in a dose-dependent manner. Our results indicate that the increased content of ceramides in the stratum corneum may underlie the therapeutic effect of the Eucalyptus extract. Our results also indicate the possibility that macrocarpal A is the key component that stimulates the synthesis of ceramide in the stratum corneum.  相似文献   

2.
3.
Our objectives were to (1) determine whether the abomasal infusion of behenic acid (C22:0) elevated hepatic ceramide relative to palmitic acid (C16:0) or docosahexaenoic acid (C22:6n-3) infusion; (2) assess whether the abomasal infusion of choline chloride or l-serine elevated hepatic phosphatidylcholine (PC) in cows abomasally infused with C16:0; and (3) characterize the PC lipidome in cows abomasally infused with C22:6n-3, relative to C16:0 or C22:0 infusion. In a 5 × 5 Latin square design, 5 rumen-cannulated Holstein cows (214 ± 4.9 DIM; 3.2 ± 1.1 parity) were enrolled in a study with 6-d periods. Abomasal infusates consisted of (1) palmitic acid (PA; 98% C16:0); (2) PA + choline chloride (PA+C; 50 g/d choline chloride); (3) PA + l-serine (PA+S; 170 g/d l-serine); (4) behenic acid (BA; 92% C22:0); and (5) an algal oil rich in docosahexaenoic acid (DHA; 44% C22:6n-3). Emulsion infusates provided 301 g/d of total fatty acids containing a minimum of 40 g/d of C16:0. Cows were fed a corn silage-based diet. Milk was collected on d ?2, ?1, 5, and 6. Blood was collected and liver biopsied on d 6 of each period. Although we did not detect differences in milk yield, milk fat yield and content were lower in cows infused with DHA relative to PA. Plasma triacylglycerol concentrations were lower with DHA treatment relative to PA or BA. Cows infused with DHA had lower plasma insulin concentrations relative to cows infused with PA only. For objective 1, hepatic ceramide-d18:2/22:0 was highest in cows infused with BA relative to other treatments. For objective 2, plasma free choline concentrations were greater in PA+C cows relative to PA; however, we did not observe this effect with PA+S. Plasma total PC concentrations were similar for all treatments. Regarding the hepatic lipidome, a total of 18 hepatic PC were higher (e.g., PC-16:1/18:2) and 25 PC were lower (e.g., PC-16:0/22:6) with PA+C infusion relative to PA. In addition, 17 PC were higher (e.g., PC-20:3/22:5) and 21 PC were lower (e.g., PC-18:0/22:6) with PA+S infusion relative to PA. For objective 3, hepatic concentrations of many individual saturated PC (e.g., PC-18:0/15:0) were lower with DHA relative to other treatments. Hepatic concentrations of highly unsaturated PC with very-long-chain fatty acids (e.g., PC-14:0/22:6) were higher in DHA-infused cows relative to PA, PA+C, PA+S, or BA. The abomasal infusion of emulsions containing palmitic acid, palmitic acid with choline chloride or serine, behenic acid, or docosahexaenoic acid influence the hepatic ceramide and PC profiles of lactating cows.  相似文献   

4.
Removal of underarm hair is an intrinsic part of the care regimen for the majority of female consumers, with most using a wet shave with a disposable razor. However, little is known of the impact of shaving on axillary skin, and it is a particularly neglected area of research. To investigate this, we have studied the acute and chronic effects of shaving ultrastructurally, biochemically and functionally. A forearm patch test protocol was devised for antiperspirant (AP) product screening, which involved a pre-shave of the test site with a dry razor just prior to patching. Comparison of the irritation caused by a series of AP products confirmed that shaving leads to increased irritation consistent with enhanced sensitivity. The effect of regular shaving in the axilla was assessed in a 4-week in-use study with shaving either once a week or once a day, both combined with the application of an AP. Expert visual assessment of skin condition showed that more frequent shaving promoted a higher level of visible irritation. However, indirect measurement using corneosurfametry indicated no significant changes to the lipid barrier over the study period irrespective of shaving frequency. Nevertheless, digital images of the axillary skin after dry shaving show distinct opaque lines because of uplifting skin flakes with a corresponding increase in scaliness parameter. Moreover, histamine iontophoresis to assess skin sensitivity demonstrated a significant enhancement of histamine-induced itch and neurogenic flare.  相似文献   

5.
The structure, composition, formation and function of the stratum corneum have been the subject of intense research over the last few decades. As has become apparent, stratum corneum barrier function is not only dependent on one single component but also on its total architecture. Recent developments in understanding lipid composition have led to a new ceramide nomenclature system, a new proposal for a molecular model of the interactions between ceramides, cholesterol and fatty acids, and the demonstration of the presence of crystalline orthorhombic and gel hexagonal lipid phases in the stratum corneum. Linoleate-containing ceramide one, now known as CER EOS, have been shown to be essential for the formation of the 13 nm long periodicity phase (LPP) observed by electron microscopy and X-ray diffraction studies, whereas long-chain fatty acids are important for the formation of the crystalline lipid phases essential for barrier function. The role of the corneocyte envelope, its constituent proteins and its transglutaminase-mediated maturation processes have been shown to be essential for good skin condition. Several proteases may have a role in corneodesmolysis, particularly serine and cathepsin-like enzymes. Novel filaggrin polymorphisms have been identified that may be involved in the expression of a dry skin phenotype. Disturbances in lipid packing states, reduction in ceramide levels (particularly the phytosphingosine-containing ceramides), reductions in the levels of long-chain fatty acids and loss of the LPP largely account for the perturbations in lipid structure that occur in dry skin. The reduced corneodesmolysis that occurs in this xerotic skin disorder is now well accepted and is caused by reductions in the levels and activities of stratum corneum proteases together with elevated levels of corneodesmosomal glycoproteins in the superficial layers of the stratum corneum. Additionally, increased levels of fragile corneocytes are associated with reduced transglutaminase activity and corneocyte envelope cross-linking events. However, in comparison with the advances in our understanding of the textural changes that occur in dry skin, the somatosensory changes are poorly understood and the itching associated with dry skin is still an under-researched area. The unique biosensor role of the stratum corneum essential for a competent natural moisturizing barrier may also have a role to play in the action of anti-ageing technologies by controlling the expression and secretion of epidermal cytokines and growth factors. Technologies to treat the surface textural skin problems, enhance the differentiation process, particularly lipid biosynthesis, and to control the somatosensory problems in dry skin have received much attention in the last decade. This paper will review the state of the art of stratum corneum biology and the trends in the management of dry skin.  相似文献   

6.
Research on understanding of the chemistry, function and (patho)physiology of stratum corneum (SC) lipids and especially ceramides has evolved over the last two decades. This has been made successful through the application of separation techniques that have become increasingly more sophisticated, and it has become increasingly evident that our understanding of these molecules remains in its infancy. Thirteen classes of ceramides with over 300 and possibly up to 1000 distinct ceramide species have been identified suggesting an exquisitely subtle relationship between the types of ceramides and physical and chemical behaviour. Nevertheless, research has demonstrated the importance of the correct SC lipid lamellar architecture with conformationally‐ordered lipid bilayers, the presence of long‐chain ceramides, as either free or covalently bound lipids, greater quantities of phytosphingosine‐containing ceramides and a high SC lipid/protein ratio is essential for optimal barrier function. These features are known to change in a variety of physiological and pathophysiological conditions. Clearly, there is more to be learned but as we further decipher the complexity of SC lipids and understand their individual roles in the SC, we will learn how to better treat the disorders of cornification.  相似文献   

7.
The cornified cell envelope (CE) formed by transglutaminase-mediated epsilon-(gamma-glutamyl)lysine cross-linking of specialized corneocyte proteins is the most insoluble component of the terminally differentiated keratinocyte. Under normal Nomarski optics, two types of CE are readily distinguishable: an irregularly shaped, readily deformed 'fragile' envelope (CEf), which predominates in the deepest layers of the stratum corneum, and a polygonal "resilient" or 'rigid' envelope (CEr), which represents over 80% of the CE population in the superficial layers. This distinct spatial distribution indicates a maturation of the CE from the fragile to the resilient morphology during stratum corneum maturation. In this study, we have examined morphological and physical changes occurring in the CE during the terminal differentiation. The proportion of CEf and CEr present in superficial samples of stratum corneum were readily distinguishable following staining with Tetrarhodamine isothiocyanate (TRITC) and showed significant body site variation. The percentage of CEf was highest on samples recovered from exposed body sites (back of hand > cheek > inner arm [bicep region]) suggesting innate body site differences or that photodamage and other environmental trauma can reduce or delay normal CE maturation. Soap-induced dryness resulted in a significant decrease in CE maturation coincidental with reduced corneodesmosomal hydrolysis. Effective moisturization of winter-induced dry skin enhanced CE maturation (33% increase in TRITC fluorescence, n = 14 following 4-week treatment). Using a novel micromanipulation instrument, the force required (microN) to maximally deform individual CEf and CEr was compared. CEf recovered from deep stratum corneum were significantly softer and weaker than CEr recovered from superficial layers. These studies indicate that the normal process of CE maturation is associated with an actual strengthening of this insoluble protective structure and that the impairment of this process is associated with poor quality of the stratum corneum.  相似文献   

8.
Hydration of the stratum corneum   总被引:4,自引:0,他引:4  
Topically applied water, occlusion and topically applied glycerol were used to investigate and characterize some of the changes which occur in the hydrated stratum corneum. The effects of these treatments were monitored using non-invasive techniques under controlled conditions. The Servomed Evaporimeter was used to determine natural water flux from the skin surface before and after treatment. The performance of the Evaporimeter in this type of study had previously been improved by attaching a paper baffle to the detector. This eliminated the variance in output caused by atmospheric movement. Experiments were carried out at temperatures below the threshold of thermal sweating and emotional sweating was minimized. Skin surface topography was characterized by means of a new type of profilometer. The instrument's design allowed a diamond stylus to traverse the living skin surface without significantly altering its structure. Changes in skin surface roughness were further elucidated using scanning electron microscopy and macrophotography. In vivo penetration of glycerol was assessed by chemical analysis of stratum corneum layers of treated skin. Samples were obtained by sequential stripping of the stratum corneum using adhesive tape. Topically applied water produced only a transient benefit because of rapid evaporation. More prolonged hydration was achieved by suppressing transepidermal water loss with polyethylene film. This occlusive hyperhydration was characterized by a significant reduction in profile roughness and by a smoother macroscopic appearance. Glycerol achieved the same effects by reducing the magnitude of the natural water flux from the skin surface and by reducing the rate of evaporation of water from applied aqueous glycerol solution or cosmetic product. Both effects were seen as the result of lowered water activity in the proximity of glycerol. Smoothing effects of glycerol on the skin surface, and improved appearance, persisted for at least 24 h. This persistence was explained by evidence for diffusion of glycerol into the stratum corneum where it formed a reservoir. Hydration of the skin is known to affect its barrier function and thereby exert a profound effect on penetration of both lipophilic and hydrophilic molecules. Clinically, this effect may be achieved using liberal applications of occlusive petroleum jelly and ointments. The results presented in this paper suggest that the use of humectants could achieve useful hydration using cosmetically acceptable materials.  相似文献   

9.
10.
The objective was to evaluate the effect of supplementing saturated or unsaturated fatty acids (FA) during late gestation of cows and during the preweaning period of calves on growth, health, and immune responses of calves. During the last 8 wk of pregnancy, Holstein cattle (n = 96) were fed no fat supplement (control), a saturated FA (SFA) supplement enriched in C18:0, or an unsaturated FA supplement enriched in the essential FA linoleic acid. Newborn calves were fed a milk replacer (MR) with either low linoleic acid (LLA; coconut oil) or high linoleic acid (HLA; coconut oil and porcine lard) concentration as the sole feedstuff during the first 30 d. A grain mix with minimal linoleic acid was offered between 31 and 60 d of life. At 30 and 60 d of life, concentrations of linoleic acid in plasma were increased in calves born from dams supplemented with essential FA compared with SFA (44.0 vs. 42.5% of total FA) and in calves consuming HLA compared with LLA MR (46.3 vs. 40.8% of total FA). Total n-3 FA concentration was increased in plasma of calves fed HLA compared with LLA MR (1.44 vs. 1.32%) primarily due to increased α-linolenic acid. Prepartum supplementation with SFA tended to improve dry matter intake (48.8 vs. 46.7 kg) and improved average daily gain (0.50 vs. 0.46 kg/d) by calves without affecting efficiency of gain or circulating concentrations of anabolic metabolites or hormones. Increasing mean intake of linoleic acid from approximately 4.6 to 11.0 g/d during the first 60 d of life increased average daily gain (0.50 vs. 0.45 kg/d) without a change in dry matter intake, thus improving feed efficiency (0.63 vs. 0.59 kg of gain/kg of dry matter intake). Improved weight gain in calves fed HLA MR was accompanied by increased or tendency to increase plasma concentrations of glucose (92.7 vs. 89.9 g/dL) and insulin-like growth factor I (59.5 vs. 53.2 g/dL), increased hematocrit (36.0 vs. 34.4%) and concentration of blood lymphocytes (4.61 vs. 4.21 × 103/μL), lowered plasma concentrations of acid-soluble protein (78.8 vs. 91.3 mg/L) and blood platelets (736 vs. 822 × 103/μL), and increased production of IFN-γ by peripheral blood mononuclear cells at 30 d of age (48.1 vs. 25.6 pg/mL), possibly indicating an earlier development of the immune system. Partial replacement of coconut oil with porcine lard in MR improved calf performance and some aspects of immunity.  相似文献   

11.
We tested the hypothesis that the maternal supply of essential fatty acids (EFA), especially α-linolenic acid, and conjugated linoleic acid (CLA), affects glucose metabolism, the endocrine regulation of energy metabolism and growth, and the intestinal development of neonatal calves. We studied calves from dams that received an abomasal infusion of 76 g/d coconut oil (CTRL; n = 9), 78 g/d linseed oil and 4 g/d safflower oil (EFA; n = 9), 38 g/d Lutalin (BASF SE) containing 27% cis-9,trans-11 and trans-10,cis-12 CLA (CLA; n = 9), or a combination of EFA and CLA (EFA+CLA; n = 11) during the last 63 d of gestation and early lactation. Calves received colostrum and transition milk from their own dam for the first 5 d of life. Insulin-like growth factor (IGF)-I, leptin, and adiponectin concentrations were measured in milk. Blood samples were taken before first colostrum intake, 24 h after birth, and from d 3 to 5 of life before morning feeding to measure metabolic and endocrine traits in plasma. On d 3 of life, energy expenditure was evaluated by a bolus injection of NaH13CO3 and determination of CO2 appearance rate. On d 4, additional blood samples were taken to evaluate glucose first-pass uptake and 13CO2 enrichment after [13C6]-glucose feeding and intravenous [6,6-2H2]-glucose bolus injection, as well as postprandial changes in glucose, nonesterified fatty acids (NEFA), insulin, and glucagon. On d 5, calves were killed 2 h after feeding and samples of small intestinal mucosa were taken for histomorphometric measurements. The concentrations of IGF-I, adiponectin, and leptin in milk decreased during early lactation in all groups, and the concentrations of leptin in first colostrum was higher in EFA than in CTRL cows. Plasma glucose concentration before first colostrum intake was higher in EFA calves than in non-EFA calves and was lower in CLA calves than in non-CLA calves. Plasma IGF-I concentration was higher on d 1 before colostrum intake in EFA calves than in EFA+CLA calves and indicated an overall CLA effect, with lower plasma IGF-I in CLA than in non-CLA calves. Postprandial NEFA concentration was lowest in EFA and CLA calves. The postprandial rise in plasma insulin was higher in EFA than in non-EFA calves. Plasma adiponectin concentration increased from d 1 to d 2 in all groups and was higher on d 3 in CLA than in non-CLA calves. Plasma leptin concentration was higher on d 4 and 5 in EFA than in non-EFA calves. Maternal fatty acid treatment did not affect energy expenditure and first-pass glucose uptake, but glucose uptake on d 4 was faster in EFA than in non-EFA calves. Crypt depth was lower, and the ratio of villus height to crypt depth was higher in the ilea of CLA than non-CLA calves. Elevated plasma glucose and IGF-I in EFA calves immediately after birth may indicate an improved energetic status in calves when dams are supplemented with EFA. Maternal EFA and CLA supplementation influenced postprandial metabolic changes and affected factors related to the neonatal insulin response.  相似文献   

12.
13.
Sufficient maternal supply of essential fatty acids (EFA) to neonatal calves is critical for calf development. In the modern dairy cow, EFA supply has shifted from α-linolenic acid (ALA) to linoleic acid (LA) due to the replacement of pasture feeding by corn silage–based diets. As a consequence of reduced pasture feeding, conjugated linoleic acid (CLA) provision by rumen biohydrogenation was also reduced. The present study investigated the fatty acid (FA) status and performance of neonatal calves descended from dams receiving corn silage–based diets and random supplementation of either 76 g/d coconut oil (CTRL; n = 9), 78 g/d linseed oil and 4 g/d safflower oil (EFA; n-6/n-3 FA ratio = 1:3; n = 9), 38 g/d Lutalin (BASF SE, Ludwigshafen, Germany) providing 27% cis-9,trans-11 and trans-10,cis-12 CLA, respectively (CLA; n = 9), or a combination of EFA and CLA (EFA+CLA; n = 11) in the last 9 wk before parturition and following lactation. The experimental period comprised the first 5 d of life, during which calves received colostrum and transition milk from their own dam. The nutrient compositions of colostrum and transition milk were analyzed. Plasma samples were taken after birth and before first colostrum intake and on d 5 of life for FA analyses of the total plasma fat and lipid fractions. Maternal EFA and CLA supplementation partly affected colostrum and transition milk composition but did not change the body weights of calves. Most EFA in calves were found in the phospholipid (PL) and cholesterol ester (CE) fractions of the plasma fat. Maternal EFA supplementation increased the percentage of ALA in all lipid fractions of EFA and EFA+CLA compared with CTRL and CLA calves on d 1 and 5, and the increase was much greater on d 5 than on d 1. The LA concentration increased from d 1 to 5 in the plasma fat and lipid fractions of all groups. The concentrations of docosapentaenoic acid, docosahexaenoic acid, and arachidonic acid in plasma fat were higher on d 1 than on d 5, and the percentage of n-3 metabolites was mainly increased in PL if dams received EFA. The percentage of cis-9,trans-11 CLA was higher in the plasma fat of EFA+CLA than CTRL calves after birth. By d 5, the percentages of both CLA isomers increased, leading to higher proportions in plasma fat of CLA and EFA+CLA than in CTRL and EFA calves. Elevated cis-9,trans-11 CLA enrichment was observed on d 5 in PL, CE, and triglycerides of CLA-treated calves, whereas trans-10,cis-12 CLA could not be detected in individual plasma fractions. These results suggest that an altered maternal EFA and CLA supply can reach the calf via the placenta and particularly via the intake of colostrum and transition milk, whereas the n-3 and n-6 FA metabolites partly indicated a greater transfer via the placenta. Furthermore, the nutrient supply via colostrum and transition milk might be partly modulated by an altered maternal EFA and CLA supply but without consequences on calf performance during the first 5 d of life.  相似文献   

14.
15.
Vichy spa water is essentially known for its therapeutic action on liver and bile duct functions. Its mechanism of action may be partially explained by the activation of certain digestive enzymes. A literature survey showed that Vichy water has also been used for local application in the treatment of certain dermatoses. Based on these data, the effects of Vichy spa water on the skin were studied using cutaneous enzymatic systems. The first studies were carried out on catalase, an oxidoreductase. The results showed a statistically significant increase ( p <0.05) in the activity of the enzyme in the presence of Vichy spa water both in vitro and in vivo. Considering the involvement of catalase in skin defence against oxygen-derived free radicals generated, its increased activity may explain the beneficial role of Vichy water observed in various dermatoses.  相似文献   

16.
Sufficient glucose availability is crucial for exploiting the genetic potential of milk production during early lactation, and endocrine changes are mainly related to repartitioning of nutrient supplies toward the mammary gland. Long-chain fatty acids, such as essential fatty acids (EFA) and conjugated linoleic acid (CLA), have the potential to improve negative energy balance and modify endocrine changes. In the present study, the hypothesis that combined CLA and EFA treatment supports glucose metabolism around the time of calving and stimulates insulin action and the somatotropic axis in cows in an additive manner was tested. Rumen-cannulated German Holstein cows (n = 40) were investigated from wk 9 antepartum (AP) until wk 9 postpartum (PP). The cows were abomasally supplemented with coconut oil (CTRL, 76 g/d); 78 g/d of linseed and 4 g/d of safflower oil (EFA); Lutalin (CLA, isomers cis-9,trans-11 and trans-10,cis-12 CLA, each 10 g/d); or the combination of EFA+CLA. Blood samples were collected several times AP and PP to determine the concentrations of plasma metabolites and hormones related to glucose metabolism and the somatotropic axis. Liver tissue samples were collected several days AP and PP to measure glycogen concentration and the mRNA abundance of genes related to gluconeogenesis and the somatotropic axis. On d 28 AP and 21 PP, endogenous glucose production (eGP) and glucose oxidation (GOx) were measured via tracer technique. The concentration of plasma glucose was higher in CLA than in non-CLA-treated cows, and the plasma β-hydroxybutyrate concentration was higher in EFA than in non-EFA cows on d 21 PP. The eGP increased from AP to PP with elevated eGP in EFA and decreased eGP in CLA-treated cows; GOx was lower in CLA than in CTRL on d 21 PP. The plasma insulin concentration decreased after calving in all groups and was higher in CLA than in non-CLA cows at several time points. Plasma glucagon and cortisol concentrations on d 21 PP were lower in CLA than non-CLA groups. The glucagon/insulin and glucose/insulin ratios were higher in CTRL than in CLA group during the transition period. Plasma IGF-I concentration was lower in EFA than non-EFA cows on d 42 AP and was higher during the dry period and early lactation in CLA than in non-CLA cows. The IGF binding protein (IGFBP)-3/-2 ratio in blood plasma was higher in CLA than in non-CLA cows. Hepatic glycogen concentration on d 28 PP was higher, but the mRNA abundance of PC and IGFBP2 was lower in CLA than non-CLA cows on d 1 PP. The EFA treatment decreased the mRNA abundance of IGFBP3 AP and PCK1, PCK2, G6PC, PCCA, HMGCS2, IGFBP2, and INSR at several time points PP. Results indicated elevated concentrations of plasma glucose and insulin along with the stimulation of the somatotropic axis in cows treated with CLA, whereas EFA treatment stimulated eGP but not mRNA abundance related to eGP PP. The systemic effects of the combined EFA+CLA treatment were very similar to those of CLA treatment, but the effects on hepatic gene expression partially corresponded to those of EFA treatment.  相似文献   

17.
Some in vitro and in vivo studies have demonstrated protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation. However, only a few and conflicting studies have been conducted showing the antioxidant potential of essential fatty acids. The objectives of the study were to compare the effects of CLA to other essential fatty acids on the thiol redox status of bovine mammary epithelia cells (BME-UV1) and their protective role against oxidative damage on the mammary gland by an in vitro study. The BME-UV1 cells were treated with complete medium containing 50 μM of cis-9,trans-11 CLA, trans-10,cis-12 CLA, α-linolenic acid, γ-linolenic acid, and linoleic acid. To assess the cellular antioxidant response, glutathione, NADPH, and γ-glutamyl-cysteine ligase activity were measured 48 h after addition of fatty acids (FA). Intracellular reactive oxygen species and malondialdehyde production were also assessed in cells supplemented with FA. Reactive oxygen species production after 3 h of H2O2 exposure was assessed to evaluate and to compare the potential protection of different FA against H2O2-induced oxidative stress. All FA treatments induced an intracellular GSH increase, matched by high concentrations of NADPH and an increase of γ-glutamyl-cysteine ligase activity. Cells supplemented with FA showed a reduction in intracellular malondialdehyde levels. In particular, CLA isomers and linoleic acid supplementation showed a better antioxidant cellular response against oxidative damage induced by H2O2 compared with other FA.  相似文献   

18.
19.
应用尿素包合法对茶油中的油酸、亚油酸进行纯化。通过阶梯式降温,使饱和脂肪酸乙酯、油酸乙酯、亚油酸乙酯依次分开。考察了第一阶段结晶温度、第二阶段结晶温度和尿素用量对油酸得率的影响。得到最佳工艺为:第一阶段结晶温度为5℃,第二阶段结晶温度为-10℃、尿素用量为1:1。此时,油酸和亚油酸的得率分别为86.19%和82.17%。结果表明,第一阶段结晶温度是影响纯化效果的主要因素。实现了对油酸、亚油酸的分离纯化,为茶油在食品及医药中的应用奠定了良好的基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号