首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of methemerythrin (Hr+) by dithionite produces deoxyhemerythrin (Hro) in multi, possibly three, stages. The kinetics were examined at pH 8·2 and 25 °C. The first stage is reduction of methemerythrin to an intermediate A by SO2- (k = 1.3 × 105m?1s?1). The much slower second and third stages have rates independent of dithionite concentrations. Reaction is completed after about 10 h. The kinetics of reactions of A with N3-, H2O2, and O2 were examined, as well as the conversion of A to intermediate B (k = 4·4 × 10?4s?1). It is concluded that A is an (Fe(II)Fe(III))8 species, and that in B the unit (Fe(II)Fe(II))8 is well developed, judging by its unreactivity towards N3?, its reaction with H2O2, and its reversible uptake of O2 (85–90% of the final product). There is little effect of adjusting the pH to 6·3 on the rates of the processes examined.  相似文献   

2.
3.
The reduction by dithionite ion (in excess) of methemerythrin-anion adducts, Hr+X-, to deoxyhemerythrin, Hr degree, has been examined at 25 degrees and pH 6.3 and 8.2. The results accord with the scheme: S2O42- in equilibrium 2SO2- rapid Hr+X- in equilibrium Hr++X- k-1, k1 Hr++SO2- leads to PRODUCT k2 with X- = Br-, HCO2-, CNO-, and F-, k2[SO2-] greater than k1[X-], and the pseudo first-order rate constant, kobs (= k-1), is independent of [X-] and [S2O42-]. Only with X- = NCS- is k2[SO2-] approximately k1[X-] and kobs = a[S2O42-]1/2 (b[NCS-] + [S2OR2-]1/2)-1. Values at pH 6.3 of k-1 (sec-1) and k1 (M-1 sec-1), obtained by anation and anion displacement reactions, are 2.3 x 10(-3), 1.6 x 10(-2) (Br-); 1.5 x 10(-3), 1.2 x 10(-2) (HCO2-); 1.3 x 10(-4), 0.52 (CNO-) and approximately 2 x 10(-4), 3.3 x 10(-3) (CN-, pH 7.0). Values of k-1 from reduction and displacement methods are in good agreement with each other. The value of k2 (1.6 x 10(5) M-1 sec-1, pH 6.3) in somewhat smaller than that for reduction of the met form of hemoproteins. There is only a small effect of pH on rates. Direct reduction of Hr+CN- does not occur, in contrast with Mb+CN-.  相似文献   

4.
The reduction of lactoperoxidase with sodium dithionite has been studied by means of stopped-flow spectrophotometry in an anaerobic system. Under pseudo-first-order conditions the rate constant was found to be linearly dependent on the square root of the dithionite concentration, which confirms the monomeric radical, SO2- as the reducing species. The second-order rate constant is moderately influenced by increased ionic strength but drastically increased at lower pH. The pH dependence supports the previously suggested existence of a carboxyl group, essential to the different enzymatic functions of lactoperoxidase. The second-order rate constant for the reduction of lactoperoxidase at pH 7.0 (kappa 1 = 1.3 X 10(5) M-1 s-1) was about three times higher than the rate constant for the reduction of cyanide-bound lactoperoxidase and two times the rate constant for the reduction of the fluoride-lactoperoxidase complex.  相似文献   

5.
The reduction of methemoglobin by cobaltocytochrome c (Cocyt c) has been measured using nine mediators of different half-reduction potentials, Em, 7. The rate increases with the increase of Em, 7 for the mediator but dropped precipitously when it becomes more positive than the Em, 7 for the methemoglobin/hemoglobin couple. The reaction is most efficient with phenzaine methosulfate, therefore it was studied in detail. The reaction is first order in the concentrations of Cocyt c and phenazine methosulfate. The average second-order rate constant for Cocyt c + phenazine methosulfate (M) k1 leads to Cocyt c+ M-. is 2.9 x 10(4) M-1 s-1 at 25 degrees C, 0.1 M phosphate pH 7.0. There is a slight negative temperature dependence of k1 at low temperature; at higher temperatures the process has deltaH not equal to approximately 27 kJ mol-1 and deltaS not equal to approxmately - 75 J mol-1 K-1. The effect of anions reflects the dependence of Em, 7 for the methemoglobin/hemoglobin couple with various anions. There is no significant effect on k1 by the addition of inositol hexakisphosphate. The variation of k1 with pH is complicated. The experimental rate constants are compared with values calculated with the theory of nonadiabatic multiphonon process of electron tunneling.  相似文献   

6.
7.
The reduction of cytochrome c oxidase by dithionite was reinvestigated with a flow-flash technique and with varied enzyme preparations. Since cytochrome a3 may be defined as the heme in oxidase which can form a photolabile CO adduct in the reduced state, it is possible to follow the time course of cytochrome a3 reduction by monitoring the onset of photosensitivity. The onset of photosensitivity and the overall rate of heme reduction were compared for Yonetani and Hartzell-Beinert preparations of cytochrome c oxidase and for the enzyme isolated from blue marlin and hammerhead shark. For all of these preparations the faster phase of heme reduction, which is dithionite concentration-dependent, is almost completed when the fraction of photosensitive material is still small. We conclude that cytochrome a3 in the resting enzyme is consistently reduced by an intramolecular electron transfer mechanism. To determine if this is true also for the pulsed enzyme, we examined the time course of dithionite reduction of the peroxide complex of the pulsed enzyme. It has been previously shown that pulsed cytochrome c oxidase can interact with H2O2 and form a stable room temperature peroxide adduct (Bickar, D., Bonaventura, J., and Bonaventura, C. (1982) Biochemistry 21, 2661-2666). Rather complex kinetics of heme reduction are observed when dithionite is added to enzyme preparations that contain H2O2. The time courses observed provide unequivocal evidence that H2O2 can, under these conditions, be used by cytochrome c oxidase as an electron acceptor. Experiments carried out in the presence of CO show that a direct dithionite reduction of cytochrome a3 in the peroxide complex of the pulsed enzyme does not occur.  相似文献   

8.
Cytochrome c (cyt c) was reduced by a tyrosine-containing peptide, tyrosyltyrosylphenylalanine (TyrTyrPhe), at pH 6.0–8.0, while tyrosinol or tyrosyltyrosine (TyrTyr) could not reduce cyt c effectively under the same condition. Cyt c was reduced at high peptide concentration, whereas the reaction did not occur effectively at low concentration. The reaction rate varied with time owing to a decrease in the TyrTyrPhe concentration and the production of tyrosine derivatives during the reaction. The initial rate constants were 2.4×10–4 and 8.1×10–4 s–1 at pH 7.0 and 8.0, respectively, for the reaction with 1.0 mM TyrTyrPhe in 10 mM phosphate buffer at 15°C. The reciprocal initial rate constant (1/kint) increased linearly against the reciprocal peptide concentration and against the linear proton concentration, whereas logkint decreased linearly against the root of the ionic strength. These results show that deprotonated (TyrTyrPhe), presumably deprotonated at a tyrosine site, reduces cyt c by formation of an electrostatic complex. No significant difference in the reaction rate was observed between the reaction under nitrogen and oxygen atmospheres. From the matrix-assisted laser desorption ionization time-of-flight mass spectra of the reaction products, formation of a quinone and other tyrosine derivatives of the peptide was supported. These products should have been produced from a tyrosyl radical. We interpret the results that a cyt cox/(TyrTyrPhe)cyt cred/(TyrTyrPhe) equilibrium is formed, which is usually shifted to the left. This equilibrium may shift to the right by reaction of the produced tyrosyl radical with the tyrosine sites of unreacted TyrTyrPhe peptides.  相似文献   

9.
The rate and equilibrium constants for the information of a number of metmyoglobin species Mb+X (X = imidazole, imidazole-H-, 1-methylimidazole, 2-methylimidazole, 4-nitroimidazole, 2-methyl-5-nitroimidazole, pyridine, 2-, 3-, and 4-picoline) and the rates of their reduction by dithionite have been measured at 25 degrees. Several different kinds of kinetic behavior for the reduction were observed. In all cases, a rate constant for direct reaction of Mb+X with SO2- can be assessed. The data strongly support attack of SO2- on the ligand, followed by electron transfer through the pi system to the metal ion.  相似文献   

10.
The kinetics of dithionite reduction of the oxidized heme nonapeptide fragment of horse heart cytochrome c have been measured as a function of ionic strength at pH 7 and pH 9 by the stopped-flow technique. Dithionite concentration dependences indicate that the radical anion monomer, SO2-., is the active reductant. The pH 7 ionic strength dependence suggests that the heme peptide is reacting as a negatively charged molecule (its overall charge is calculated to be -1). Comparison of these results with the known rate of dithionite reduction of cytochrome c indicates that the heme nonapeptide has substantially greater inherent reactivity than cytochrome c, perhaps due to the greater accessibility of the heme.  相似文献   

11.
Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris.   总被引:5,自引:5,他引:0       下载免费PDF全文
The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium-contaminated waters and waste streams.  相似文献   

12.
The inorganic sulfane tetrathionate (-O3SSSSO3-) resembles glutathione trisulfide (GSSSG) in that it remarkably activates the reduction of cytochrome c by GSH, both under aerobic and anaerobic conditions. These observations can be explained by the formation of the persulfide GSS-, due to nucleophilic displacements of sulfane sulfur. The GSS- species has previously been proposed to act as a chain carrier in the catalytic reduction of cytochrome c, and perthiyl radicals GSS·, formed in the reduction step, were thought to recycle to sulfane via dimerization to GSSSSG.2 The present study provides some arguments in favour of a chain mechanism involving the GSS· + GS- ⇄ (GSSSG)- equilibrium and sulfane regeneration by a second electron transfer from (GSSSG)· - to cytochrome c.

Thiosulfate sulfurtransferase (rhodanese) is shown to act as a cytochrome c reductase in the presence of thiosulfate and GSH, and again the generation of GSS- can be envisaged to explain this result.  相似文献   

13.
We have studied the behaviour of Fe(III) cytochrome c upon irradiation in the 290-360 nm wavelength range either in the presence or in the absence of NADH; in both cases the photoexcitation caused the reduction of the heme iron. When the irradiation was performed in the absence of NADH, the iron reduction was coupled to a non reversible modification in the protein structure; the photoreduction quantum yield was decreasing with the increase of the irradiation wavelength. Irradiation in the presence of NADH gave heme iron reduction coupled to NADH oxidation and the protein resulted finally unmodified; the quantum yield depended on the irradiation wavelength in a way similar to the observed in the absence of NADH, but it was tenfold higher. We propose that in both cases the active species is an electronic excited state of the heme iron.  相似文献   

14.
The kinetics and mechanism of the reduction of oxidized cytochrome c by ascorbate has been investigated in potassium nitrate, potassium 4-morpholineethanesulfonate (KMes), potassium sulfate and potassium ascorbate media. The results are consistent with simple second order electron transfer from ascorbate dianion to cytochrome c and do not support electron transfer from an ascorbate dianion bound to the protein of the cytochrome as recently proposed by Myer and Kumar. A rate constant of 8 X 10(5) M-1 X s-1 (25 degrees C, ionic strength, 0.1) was found for the electron-transfer step. This rate constant is essentially independent of the specific ions used in controlling ionic strength.  相似文献   

15.
In a continuing effort to understand the mechanism of electron transfer by c-type cytochromes we have extended our investigations of the oxidation and reduction of Rhodospirillum rubrum cytochrome c2. We have utilized the oxidant, oxidized azurin, and the reductants SO2?, S2O42?, sodium ascorbate, and reduced azurin. The results of these studies demonstrate that, as found previously with the iron hexacyanides, electron transfer apparently takes place at the exposed heme edge. Furthermore, we report studies on the reduction of ferricytochrome c2 from Rhodopseudomonas sphaeroides, Rhodopseudomonas capsulata, Rhodomicrobium vannielii, and Rhodopseudomonas palustris by potassium ferrocyanide. Based on the amino acid sequence homology between the various cytochromes c2 and presumed structural homology, the observed rates of electron transport are analyzed in terms of the structure in the region of the exposed heme edge.  相似文献   

16.
The oxidation of yeast cytochrome c peroxidase by hydrogen peroxide produces a unique enzyme intermediate, cytochrome c peroxidase Compound I, in which the ferric heme iron has been oxidized to an oxyferryl state, Fe(IV), and an amino acid residue has been oxidized to a radical state. The reduction of cytochrome c peroxidase Compound I by horse heart ferrocytochrome c is biphasic in the presence of excess ferrocytochrome c as cytochrome c peroxidase Compound I is reduced to the native enzyme via a second enzyme intermediate, cytochrome c peroxidase Compound II. In the first phase of the reaction, the oxyferryl heme iron in Compound I is reduced to the ferric state producing Compound II which retains the amino acid free radical. The pseudo-first order rate constant for reduction of Compound I to Compound II increases with increasing cytochrome c concentration in a hyperbolic fashion. The limiting value at infinite cytochrome c concentration, which is attributed to the intracomplex electron transfer rate from ferrocytochrome c to the heme site in Compound I, is 450 +/- 20 s-1 at pH 7.5 and 25 degrees C. Ferricytochrome c inhibits the reaction in a competitive manner. The reduction of the free radical in Compound II is complex. At low cytochrome c peroxidase concentrations, the reduction rate is 5 +/- 3 s-1, independent of the ferrocytochrome c concentration. At higher peroxidase concentrations, a term proportional to the square of the Compound II concentration is involved in the reduction of the free radical. Reduction of Compound II is not inhibited by ferricytochrome c. The rates and equilibrium constant for the interconversion of the free radical and oxyferryl forms of Compound II have also been determined.  相似文献   

17.
18.
Pulse radiolysis-kinetic spectrometry has been used to investigate the reaction of hydrated electrons with ferricytochrome c in dilute aqueous solution at pH 6.5–7.0. Time resolutions from 2·10?7 to 1 s were employed. Transient spectra from 320 to 580 nm were characterized with a wavelength resolution of ±0.5 nm. 1 In neutral salt-free solution, k(ferricytochrome c+e?aq)=(6.0±0.9)·1010 M?1·s?1 and k(ferricytochrome c+H)=(1.2±0.2)·1010 M?1·s?1. The reaction of ferricytochrome c with hydrated electrons is sensitive to ionic strength; in 0.1 M NaClO4, k(ferricytochrome c+e?aq)=(2.4±0.4)·1010 M?1·s?1. In contrast, k(ferricytochrome c+H) is insensitive to ionic strength. Time resolution of three spectral stages has been accomplished. The primary spectrum is the first observable spectrum detectable after irradiation and is formed in a second-order process. Its rate of formation is indisting-uishable from the rate of disappearance of the electron spectrum. The secondary spectrum is generated in a true first order intramolecular process, k(p→s)=(1.2±0.1)·105 s?1. The tertiary spectrum is also generated in a true first-order process, k(s→t)=(1.3±0.2)·102 s?1. The specific rates of both transformations are independent of the wavelength of measurement. The tertiary spectrum, observable 50 ms after initial reaction and remaining unchanged thereafter for at least 1 s, shows that relaxed ferrocytochrome c is the only detectable product. This product is not autoxidizable, as expected for native reduced enzyme. It is more probable that the intramolecular changes responsible for the p→s and s→t spectral transformations involve the influence of conformational relaxation of ferrocytochrome c upon electronic energy states then that they are intramolecular transmission of reducing equivalents from primary sites of electron attachment.  相似文献   

19.
Dithionite causes the depletion of dioxygen from suspensions of erythrocytes by reduction of the external dioxygen and not by diffusion into the cell. The molar enthalpy for the reduction shows a small difference with respect to the values found for free hemoglobin; and the normal stoichiometry of 2 moles dithionite/mole dioxygen found there is not observed with erythrocytes. At low hematocrit, the stoichiometry is 2.6:1 and decreases to 1.5:1 at high hematocrit. The change is not due to differences in the hemoglobin saturation or to an inability of dithionite to reduce all dioxygen present at the higher hematocrit. Neither catalase nor peroxidase added to the extracellular volume significantly alters the stoichiometry or the enthalpy of dioxygen reduction by dithionite. Addition of superoxide dismutase, however, restores the normal stoichiometry at high hematocrit and further increases the stoichiometry at low hematocrit. The calorimetrical signal of hydrogen peroxide, clearly seen with free dioxygen, is not present with erythrocytes. In all these cases the total heat evolved is the same.  相似文献   

20.
The resonance Raman spectra of deoxygenated solutions of mixed-valence cyanide-bound and fully reduced cytochrome oxidase derivatives that have been reduced in the presence of aqueous or solid sodium dithionite exhibit two new low-frequency lines centered at 474 and 590 cm-1. These lines were not observed when the reductant system was changed to a solution containing ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Under enzyme turnover conditions, the addition of dithionite to the reoxidized protein (the 428-nm or "oxygenated" form) increases the intensity of these lines, while reoxidation and rereduction of the enzyme in the presence of ascorbate/TMPD resulted in the absence of both lines. Our data suggest that both lines must have contributions from species formed from aqueous dithionite, presumably the SO2 species, since these two lines are also observed in the Raman spectrum of a solution of aqueous dithionite, but not in the spectrum of an ascorbate/TMPD solution. Since heme metal-ligand stretch vibrations are expected to appear in the low-frequency region from 215 to 670 cm-1, our results indicate that special care should be exercised during the interpretation of the cytochrome a3 resonance Raman spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号