首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fracture behavior of composite bonded joints subjected to mode-I, mode-II and mixed-mode I + II loading conditions was characterized by mechanical testing and numerical simulation. The composite adherents were bonded using two different epoxy adhesives; namely, the EA 9695 film adhesive and the mixed EA 9395-EA 9396 paste adhesive. The fracture toughness of the joints was evaluated in terms of the critical energy release rate. Mode-I tests were conducted using the double-cantilever beam specimen, mode-II tests using the end-notch flexure specimen and mixed-mode tests (three mixity ratios) using a combination of the two aforementioned specimens. The fracture behavior of the bonded joints was also simulated using the cohesive zone modeling method aiming to evaluate the method and point out its strengths and weaknesses. The simulations were performed using the explicit FE code LS-DYNA. The experimental results show a considerable scatter which is common for fracture toughness tests. The joints attained with the film adhesive have much larger fracture toughness (by 30–60%) than the joints with the paste adhesive, which exhibited a rather brittle behavior. The simulation results revealed that the cohesive zone modeling method performs well for mode-I load-cases while for mode-II and mixed-mode load-cases, modifications of the input parameters and the traction-separation law are needed in order for the method to effectively simulate the fracture behavior of the joints.  相似文献   

2.
The behaviour of a woven fabric carbon/epoxy composite T-joint (representing a simplified version the T-joint located at the connection between the B-pillar and the longitudinal rocker in a car body structure) is investigated using experimental and numerical methods. Details of the manufacturing process and experimental design factors are considered to understand their influence on the performance of the T-joint structure. The experimental results reveal the influence of manufacturing process and experimental setup on the load-carrying capacity and failure mode of the T-joint. Numerical simulation accurately predicts the stress distribution and load-carrying capacity of the T-joint obtained from experimental tests. The FEM model, which includes the adhesive interface layers at the edges, convincingly represents the experimentally found stiffness: the error is less than 3%. According to Hashin matrix tension criteria, the first ply failure occurs at 3.746 kN when the Hashin failure index (R) becomes equal to 1. Whereas, in the case of experimental tests, the first ply failure occurs around 3.4 kN, at which force the first load drop is observed.  相似文献   

3.
This paper presents analysis of a 3-dimensional engineered structural panel (3DESP) having a tri-axial core structure made from phenolic impregnated laminated-paper composites with and without high-strength composite carbon-fiber fabric laminated to the outside of both faces. Both I-beam equations and finite element method were used to analyze four-point bending of the panels. Comparisons were made with experimental panels. In this study, four experimental panels were fabricated and analyzed to determine the influence of the carbon-fiber on bending performance. The materials properties for finite element analyses (FEA) and I-beam equations were obtained from either the manufacturer or in-house material tensile tests. The results of the FEA and I-beam equations were used to compare with the experimental 3DESP four-point bending tests. The maximum load, face stresses, shear stresses, and apparent modulus of elasticity were determined. For the I-beam equations, failure was based on maximum stress values. For FEA, the Tsai-Wu strength failure criterion was used to determine structural materials failure. The I-beam equations underestimated the performance of the experimental panels. The FEA-estimated load values were generally higher than the experimental panels exhibiting slightly higher panel properties and load capacity. The addition of carbon-fiber fabric to the face of the panels influenced the failure mechanism from face buckling to panel shear at the face–rib interface. FEA provided the best comparison with the experimental bending results for 3DESP.  相似文献   

4.
5.
Recent experimental tests and numerical simulations about the fire resistance behaviour of CFRP-strengthened RC beams proved that CFRP strengthening systems are able to attain considerable fire endurance, provided that adequate fire protection systems are used. In a fire event, even though a CFRP laminate may rapidly debond from the central part of the beam in which it is installed, if sufficiently thick insulation is applied in the anchorage zones, the laminate transforms into a “cable” fixed at the extremities, thus maintaining a considerable contribution to the mechanical response of the strengthened beam. This paper presents experimental and numerical investigations on CFRP-strengthened RC beams with the objective of understanding in further depth their fire resistance behaviour, namely the influence of the above mentioned “cable” mechanism on the mechanical response of the beams. The experimental campaign, performed at ambient temperature, comprised 4-point bending tests on RC beams strengthened with CFRP laminates according to either the EBR or the NSM techniques, in both cases fully or partially (only at the anchorages, thus simulating the cable mechanism) bonded to the soffit of the beams. For the test conditions used in this study, for both types of strengthening systems, partially bonding the CFRP laminates did not affect the stiffness of the beams and caused only a slight reduction of their strength (6–15%). The numerical study comprised the simulation of the structural response of all beams tested. Non-linear finite element models were developed in Atena commercial package, in which a smeared cracked model was adopted to simulate concrete and appropriate bond-slip constitutive relations were defined for the CFRP-concrete interfaces. A very good agreement was obtained between experimental data and numerical results, providing further validation to the “cable” mechanism and the possibility of taking it into account when designing fire protection systems for CFRP-strengthened RC beams.  相似文献   

6.
Composite materials, in most cases fiber reinforced polymers, are nowadays used in the aerospace and transportation, in which high specific energy absorption (SEA) and strength are critical issues. Aimed at the improvement of SEA and the peak impact load (P), the structure optimization of composite tape sinusoidal specimen and corresponding experiments are investigated in this paper. Firstly, the finite element model of composite tape sinusoidal specimen is constructed and is validated by experiments. Then, both the single-objective and multi-objective optimizations are performed for composite tape sinusoidal specimen under axial impact loading. At last, the optimal results are validated by experiments. The optimal results show that the SAE increases 67.8% (from 51.3666 kJ/kg to 88.887 kJ/kg) and the P decreases 42.9% (from 34.9936 kN to 20.178 kN). This work lays a foundation for structural design of crashworthiness using fiber reinforced polymers materials.  相似文献   

7.
Fibre-reinforced polymers (FRPs) are effective in the flexural stiffening and strengthening of structural members. Such systems can be optimised if accurate numerical models are developed. At present, limited information is available in the literature on numerical models that can predict with good accuracy the nonlinear behaviour of FRP reinforced low-grade glued laminated timber beams. This paper discusses the development of a finite element model, which incorporates nonlinear material modelling and nonlinear geometry to predict the load–deflection behaviour, stiffness, ultimate moment capacity and strain distribution of FRP plate reinforced glued laminated timber beams manufactured from mechanically stress graded spruce. Beams with and without sacrificial laminations are modelled and their performance is compared to unreinforced glued laminated timber beams. The model employed anisotropic plasticity theory for the timber in compression. The failure model used was the maximum stress criterion. Strong agreement was obtained between the predicted behaviour and the associated experimental findings. It was deduced from comparing the results from the numerical model with experimental findings that the FRP plate succeeds in increasing the performance of the adjacent timber significantly. The model is a useful tool for examination of the effect of reinforcement percentage and will be used for optimisation of the hybrid beam.  相似文献   

8.
The response of aluminium foam-cored sandwich panels to localised contact loading was investigated experimentally and numerically using flat-ended cylindrical punch of four varying sizes. ALPORAS and ALULIGHT closed-cell foams of 15 mm thickness with 0.3 mm thick aluminium face sheets (of 236 MPa yield strength) were used to manufacture the sandwich panels. Face sheet fracturing at the perimeter of the indenter, in addition to foam cells collapse beneath the indenter and tearing of the cell walls at the perimeter of the indenter were the major failure mechanisms of the sandwich panels, irrespective of the strength and density of the underlying foam core. The authors employed a 3D model in ABAQUS/Explicit to evaluate the indentation event, the skin failure of the face sheets and carry out a sensitivity study of the panel's response. Using the foam model of Deshpande and Fleck combined with the forming limit diagram (FLD) of the aluminium face sheet, good quantitative and qualitative correlations between experiments and simulations were achieved. The higher plastic compliance of the ALPORAS led to increased bending of the sheet metal and delayed the onset of sheet necking and failure. ALULIGHT-cored panels exhibited higher load bearing and energy absorption capacity, compared with ALPORAS cores, due to their higher foam and cell densities and higher yield strength of the cell walls. Additionally, they exhibited greater propensity for strain hardening as evidenced by mechanical testing and the neutron diffraction measurements, which demonstrated the development of macroscopically measurable stresses at higher strains. At these conditions the ALULIGHT response upon compaction becomes akin to the response of bulk material with measurable elastic modulus and evident Poisson effect.  相似文献   

9.
Effect of imperfections at the interface between concrete and FRP on the strength of FRP confined axially loaded cylindrical concrete columns is investigated, experimentally and numerically. It is seen that the presence of imperfections facilitates localization of deformation, adversely affects the confining capacity of FRP, and reduces the failure load. The influence of size, location and orientation of imperfection on failure load is studied: the orientation and location are found to be more important than size. Critical locations and orientations of the imperfection are found and explained in terms of the mechanics of shear banding in pressure-sensitive elasto-plastic materials.  相似文献   

10.
The main objective of the research reported here was to develop a new hybrid glulam panel that improves the performance of timber structures and optimises the use of wood in such structures. The hybrid panel is produced by combining glulam with short ultra-high-performance fibre-reinforced concrete (UHPC-SFR) planks with or without internal steel or fibre-reinforced polymer (FRP) reinforcement bars. This study presents an experimental programme of tests performed on seven large-scale hybrid panels under four-point bending. The results show that by combining wood and UHPC-SFR, a hybrid panel is obtained with greater bending stiffness and an increased ultimate load capacity. To detail the failure modes and better understand the mechanical behaviour of this hybrid panel, FEM modelling was performed. The results show that it is possible to accurately model bending behaviour and determine the distribution of stress in composite sections.  相似文献   

11.
Compressive behavior of composite materials has received significant attention in recent years. In the present work, a recently developed strain based fiber kinking model and stress based ones for unidirectional laminated composites are compared with experimental results. These models are implemented into a finite element code and the obtained results for glass/epoxy (Type C) ASNA 4197 unidirectional composites are presented and discussed in detail. Experimental investigations on compressive strength and kink band formation were also performed for several specimens with various dimensions and off-axis angles made of the same glass/epoxy prepreg composite material. A special compressive fixture was also fabricated in order to ensure that the specimens are in full contact with the loading machine elements and also to eliminate the potential bending moments.Comparison between the experimental and analytical results indicated that the proposed fiber kinking model and the developed code can be used to predict the compressive strength of laminated composites due to fiber kinking mode.  相似文献   

12.
An experimental and numerical study has been carried out to understand and predict the compressive failure performance of quasi-isotropic carbon–epoxy laminates with out-of-plane wrinkle defects. Test coupons with artificially induced fibre-wrinkling of varied severity were manufactured and tested. The wrinkles were seen to significantly reduce the pristine compressive strength of the laminates. High-speed video of the gauge section was taken during the test, which showed extensive damage localisation in the wrinkle region. 3D finite element (FE) simulations were carried out in Abaqus/Explicit with continuum damage and cohesive zone models incorporated to predict failure. The FE analyses captured the locations of damage and failure stress levels very well for a range of different wrinkle configurations. At lower wrinkle severities, the analyses predicted a failure mode of compressive fibre-failure, which changed to delamination at higher wrinkle angles. This was confirmed by the tests.  相似文献   

13.
The failure of a quasi-isotropic composite laminate containing an embedded out-of-plane fibre wrinkle defect was investigated under tension loading. Laboratory test specimens with controlled severity of fibre waviness were manufactured. Along with recording load–displacement data, high resolution camera images were taken at regular intervals which monitored the initiation and interaction of different damage mechanisms during test. Three-dimensional FE models were built following the geometry of actual test specimens. The information obtained from the tests was used to develop user material subroutines, implemented in Abaqus/Explicit as continuum damage and cohesive zone models for intra- and inter-ply failure respectively. The results of the simulations showed very good correlation with test observations in terms of failure load, location of damage initiation and interaction between different damage mechanisms for a range of waviness cases tested.  相似文献   

14.
This paper investigates the through-thickness tensile behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. Tensile tests were carried out with cross specimens at room temperature and liquid nitrogen temperature (77 K), and the through-thickness elastic and strength properties of the woven GFRP laminates were evaluated. The failure characteristics of the woven GFRP laminates were also studied by optical and laser scanning microscopy observations. A three-dimensional finite element analysis was performed to calculate the stress distributions in the cross specimens, and the failure conditions of the specimens were examined. It is found that the cross specimen is suitable for the cryogenic through-thickness tensile characterization of laminated composite materials. In addition, the through-thickness Young's modulus of the woven GFRP composite laminates is dominated by the properties of the matrix polymer in the given temperature, while the tensile strength is characterized by both, the fiber to matrix interface energy and the cohesion energy of the matrix polymer.  相似文献   

15.
The design of steel fibre reinforced concrete (SFRC) structures is evolving towards a new approach that uses correction factors to consider differences between the small-scale characterisation specimens and the real-scale elements. Recently, the Model Code 2010 proposed an orientation factor (K) that accounts for the effects of the orientation in the structural response of elements. The present study focuses on the identification of this factor in SFRC slabs with different dimensions. For that, flexural tests on real-scale slabs were conducted and the fibre orientation was assessed with an inductive method. A finite element analysis showed the differences between the experimental curves and the prediction of the Model Code without considering K. Based on the results obtained, a range of values is proposed for K and validated. This study sheds light on possible modifications that this philosophy of design might require to better reproduce the behaviour of slabs.  相似文献   

16.
Torsion tests were conducted on unidirectional carbon/epoxy laminated plates. Preliminary finite element analyses showed that the specimen geometry selected avoided pronounced geometric non-linearity and ensured that a significant volume of material would be under a high fraction of the maximum shear stress. Furthermore, the clear prevalence of in-plane shear stresses allowed the development of a simplified data analysis model. Calculated shear-stress strain curves were consistent with the results of tensile tests on angle-ply coupons, despite lower failure stresses that may have been caused by surface defects or by spurious transverse tensile stresses. Nevertheless, the unidirectional plate torsion test is worthy of further research, given the structural relevance of torsional loads and the problems of in-plane shear tests methods.  相似文献   

17.
The results of an experimental campaign on bond between Glass Fiber Reinforced Polymer (GFRP) sheets and single clay brick or masonry panel is presented. Four different types of clay bricks (new and ancient) are considered, where the difference between bricks is not only due to their mechanical properties but also to their surface texture. Another focus point of the experimental campaign is the effect of mortar joints on the GFRP-masonry panel bond. Moreover, the effects of different surface preparations on the debonding load were investigated, concerning both bricks and masonry panels. A total number of 38 specimens was tested and results in terms of debonding force, strain along the GFRP and failure modes are here reported. The experimental results were also compared to design formula proposed by the new version of Italian Guidelines. Furthermore, in order to numerically describe the bond behaviour of the specimens tested, non-linear interface laws were calibrated starting from the debonding load and the measured strains along the GFRP for various loading levels.  相似文献   

18.
Bond behavior between masonry and FRP was investigated in the present paper; in particular, its numerical modeling was carried out considering both single bricks and masonry prisms (with presence of mortar joints between the bricks) as possible substrate. The numerical approach was presented and results compared with those obtained from a recent extensive experimental campaign carried out on GFRP sheets bonded to bricks and prisms, and by considering four different types of clay bricks. Was presented an investigation of the role of the non-linear behavior of the substrate on the bond behavior when using an interface law, and a deep analysis of the debonding process leading to the observation of two different interface mechanisms, properly captured by introducing two separate interface laws and their effectiveness discussed in terms of force-elongation curves or strain, shear stress distributions along the bonded part. Numerical results showed that the adopted interface model is in good agreement with the experimental results. Moreover, the effect of discontinuity represented by the presence of weak mortar layers between bricks (inside prisms) was discussed and clarified.  相似文献   

19.
Textile reinforcement forming is frequently used in aeronautic and automobile industries as a composite manufacturing process. The double-curved shape forming may be difficult to control and can lead to defects. Numerical simulation analysis can predict the suitable forming conditions and minimize the defects. Wrinkling as one of the most common flaws can be experienced easily during textile composite forming for certain specific shapes, for example the square box. In order to product a composite square box without wrinkles, a surface 3D weaving process has been developed to weave directly the shape of final part without the step of 2D preforming. In the surface 3D weaving the three directions are completely designed. The warp and weft yarns on all the surfaces of square box are absolutely under control and the final 3D ply has a homogeneous fibre volume fraction.  相似文献   

20.
This paper investigates the compression properties of square and triangular honeycomb core materials based on co-mingled flax fibre reinforced polypropylene (PP) and polylactide (PLA) polymers. Initial testing focused on investigating the sensitivity of the tensile properties of the composites to variations in processing conditions. Following this, a range of triangular and square honeycomb structures were manufactured using a simple slotting technique. These structures were tested in compression at quasi-static rates of strain and their strength and specific energy absorption characteristics were determined. Finally, a finite element analysis was undertaken to accurately predict the strength, energy-absorbing characteristics, buckling behaviour and failure modes of these natural fibre based core materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号