首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GFRP rebars are often used for the internal reinforcement of concrete structures, such as bridge deck slabs, to improve the corrosion resistance. Several studies were conducted to evaluate the static and fatigue behaviour of these elements but the fire resistance still needs further investigation. This paper presents an experimental investigation aimed at understanding the static behaviour of concrete beams reinforced with GFRP rebars exposed to localized elevated temperatures. Two parameters were varied: the maximum temperature imposed on the bottom side of the specimens (230 °C and 550 °C) and the lapping scheme of the rebars, including rebars with hooks and laps of different lengths. The mechanical response was investigated by quasi-static three-points bending tests at room temperature and after heating. The results show that the geometry of the reinforcement has a more relevant influence on the ultimate load than on the initial stiffness of the specimens. The localized heating temperature generates damage in concrete and partial evaporation of the matrix in the GFRP rebars without causing the collapse of the element. The reduction of the load carrying capacity mainly depends on the reinforcement geometry in the overlapping areas.  相似文献   

2.
An experimental program was carried out at the Laboratory of Structural Division of the Civil Engineering Department of the University of Minho (LEST-UM) to investigate the bond behaviour of glass fibre reinforced polymer (GFRP) bars embedded in steel fibre reinforced self-compacting concrete (SFRSCC) for the development of an innovative structural system. Thirty-six pull-out-bending tests were executed to assess the influence of the bond length, concrete cover, bar diameter and surface treatment on the bond of GFRP bars embedded in SFRSCC. This paper reports the results of a numerical study aiming to identify an accurate GFRP–SFRSCC bond–slip law. Thus, the above mentioned pullout bending tests were simulated by using a nonlinear finite element (FE) constitutive model available in FEMIX, a FEM based computer program. The bond–slip relationship adopted for modelling the FE interface that simulates the interaction between bar and concrete is the key nonlinear aspect considered in the FE analyses, but the nonlinear behaviour of SFRSCC due to crack initiation and propagation was also simulated. The evaluation of the values of the relevant parameters defining such a bond–slip relationship was executed by fitting the force versus loaded end slip responses recorded in the experimental tests. Finally, correlations are proposed between the parameters identifying the bond–slip relationship and the relevant geometric and mechanical properties of the tested specimens.  相似文献   

3.
The results of an experimental campaign on bond between Glass Fiber Reinforced Polymer (GFRP) sheets and single clay brick or masonry panel is presented. Four different types of clay bricks (new and ancient) are considered, where the difference between bricks is not only due to their mechanical properties but also to their surface texture. Another focus point of the experimental campaign is the effect of mortar joints on the GFRP-masonry panel bond. Moreover, the effects of different surface preparations on the debonding load were investigated, concerning both bricks and masonry panels. A total number of 38 specimens was tested and results in terms of debonding force, strain along the GFRP and failure modes are here reported. The experimental results were also compared to design formula proposed by the new version of Italian Guidelines. Furthermore, in order to numerically describe the bond behaviour of the specimens tested, non-linear interface laws were calibrated starting from the debonding load and the measured strains along the GFRP for various loading levels.  相似文献   

4.
The experimental investigation is focused on the thermo-mechanical behaviour of thin concrete panels reinforced with GFRP rebars. The considered thin panels (thickness of 4 cm) were exposed to increasing temperature and bending loading. These concrete elements are typical for low bearing function concrete layers in façade claddings. The influence of two aspects was studied: the concrete cover and the external surface of rebars. The heating condition was such that the temperature of the internal GFRP rebars reached about the transition temperature of the resins. This allowed to verify the variation of the deformability and the load carrying capacity of the panels with post-heating bending tests. As main outcome, the imposed temperature did not generate evident degradation of the GFRP reinforcement and of its adhesion to the concrete, while a reduction of the initial global stiffness was measured.  相似文献   

5.
Precast concrete sandwich panels often are used for the exterior cladding of residential and commercial buildings due to their thermal efficiency. Precast concrete sandwich panel systems consist of two precast reinforced concrete walls that are separated by a layer of insulation and joined by connectors that penetrate the insulation layer and are anchored to two precast concrete wythes. This paper presents push-out test results of concrete sandwich panels with and without corrugated shear connectors to investigate in-plane shear performance. The variables in this study are two types of insulation materials and the width, pitch, and embedment length of shear connectors. The test results indicate that the type of insulation material that is used in the system considerably affects the bond strength between the concrete walls and the insulation layer. A design equation adopted in ICC-ES is revised to determine the shear design capacity of precast concrete sandwich panels with various configurations of shear connectors.  相似文献   

6.
Glass fibre reinforced polymer (GFRP) pultruded profiles have been increasingly used in civil engineering structural applications in the past few decades owing to their high strength, low weight and corrosion resistance. Nevertheless, the low material moduli, which makes design most often governed by deformability and instability phenomena, the brittle failure mechanisms and the high initial costs, have been delaying their widespread use. Hybrid GFRP–concrete structural solutions have been proposed to overcome the aforementioned limitations, namely the low material moduli. Furthermore, GFRP material creep models suggest that such hybrid structures may reduce the creep deformations when compared to full GFRP structures. In this context, this paper presents experimental and analytical investigations about the creep behaviour of a hybrid GFRP–concrete footbridge comprising two I-shaped GFRP pultruded profiles and a thin deck made of steel fibre reinforced self-compacting concrete (SFRSCC). The experiments comprised flexural creep tests on a 6.0 m long footbridge prototype subjected to a uniformly distributed load for up to 2642 h, during which deflections and axial deformations were monitored. In order to assess the influence of loading and environmental conditions on the creep behaviour of the structural system, the prototype was tested for three different combinations of load levels and seasons. Experimental results showed that (i) GFRP–concrete hybrid structures lead to a considerable decrease of the creep deformations of GFRP structures and that (ii) environmental conditions significantly influence the viscoelastic response of these hybrid structures. The models proposed, based on the creep response of the constituent materials, were able to predict the observed structural response for the different load levels and environmental conditions with very good accuracy. Therefore, they are proposed to predict the long-term response of GFRP–concrete structures instead of empirical models based on short-term experimental data.  相似文献   

7.
A total of ten simply supported beams reinforced with different amounts of GFRP and steel bars were subjected to two consecutive test phases in order to evaluate their short and long-term cracking behaviour. The beams were initially tested up to service load and subjected to two additional load cycles. Subsequently, the specimens were subjected to two different levels of sustained load for 250 days. The effect of cyclic load during short-term tests resulted in an increase in crack width up to 25% more than the initial value. The sustained load led to an increase in crack width up to 2.9 times larger than that measured under the corresponding short-term load. A similar cracking behaviour was observed when reinforcing solutions with similar stiffness (GFRP or steel bars) were used.Existing models to estimate crack spacing and crack width for FRP and steel reinforced concrete elements, including ACI 440.1R-06, Eurocode 2 and Model Code 2010 are discussed and their performance is assessed against the experimental results. Model Code 2010 was found to yield more accurate predictions of the cracking behaviour of the test specimens under both short-term and long-term loading.  相似文献   

8.
Surface deformations of GFRP rebars are important in developing mechanical anchorage. The mixture of epoxy resin and milled glass fibers is considered as an alternative for surface structure of GFRP rebar to enhance the bond with the concrete. In order to investigate the applicability of the surface structure, manufacturing, material tests, pullout tests and shear tests were conducted. The mixture was successfully applied and shaped onto the GFRP rebars when the milled fibers were mixed to be within 20–50 wt% of the mixture. The bond performance was enhanced by adding as much milled glass fibers as possible but up to a workable range. When the milled glass fiber content was 50%, the upper limit of mix ratio, bond strength to concrete was only 10% less than that of the ordinary steel rebar. In addition, under an accelerated alkalinity condition, the amounts of mixed milled glass fibers in surface deformations have a minor effect on the durability of the proposed GFRP rebar.  相似文献   

9.
This paper presents the details of experimental and numerical research study on web crippling property of pultruded GFRP I-section under concentrated web crippling loadings. A total of 12 pultruded GFRP I-section with different loading conditions and bearing lengths was tested. The experimental scheme, failure modes and load–displacement curves were also presented. The investigation was focused on the effects of different loading condition and bearing length on web crippling ultimate capacity and ductility of pultruded GFRP I-section. The failure mode comprised longitudinal bending main crack, bending wrinkling cracks and shear cracks. Specimens with interior bearing load had slightly higher ultimate strength and greater deformation capacity than those of specimens with end bearing load. The ultimate strengths usually decreased with the increase of the bearing length except IG condition. Finite element models were developed to numerically simulate the tests performed in the experimental investigations by using commercial ABAQUS software. Based on the results of the parametric study, a number of design formulas proposed in this paper can be successfully employed as a design rule for predicting web crippling ultimate capacity of pultruded GFRP I-section under four loading and boundary conditions by using single parameter analysis.  相似文献   

10.
This paper presents the results of an experimental programme concerning 88 concrete pull-out specimens prepared according to ACI 440.3R-04 and CSA S806-02 standards. Rebars (reinforcing bars) made of carbon-fibre and glass-fibre reinforced polymer (CFRP and GFRP), as well as steel rebars, with a constant embedment length of five times the rebar diameter were used. The influence of the rebar surface, rebar diameter and concrete strength on the bond–slip curves obtained is analysed. In addition, analytical models suggested in the literature are used to describe the ascending branch of the bond–slip curves. To calibrate the analytical models, new equations that account for the dependence on rebar diameter are presented.  相似文献   

11.
The aim of this paper is to suggest a jacketing method using glass fiber reinforced polymer (GFRP) wires for reinforced concrete (RC) columns with lap splice of longitudinal reinforcement. For this study, four RC columns were prepared of 400 mm in diameter and 1400 mm in height with an aspect ratio of 3.5; two were lap spliced and the other two had continuous longitudinal reinforcement. One specimen of each of the two types was jacketed by GFRP wires that had a diameter of 1.0 mm. The GFRP wires were tensioned with small force during winding each column. The jacket comprised stepped layers along the variation of bending moment of the column. Cyclic lateral force was applied at the top of the columns, and the top displacement of the columns as well as corresponding force was measured during the bending tests.This study considered the failure of the four tested columns and analyzed their later force–displacement behavior. Additionally, the effective stiffnesses of the force–displacement curves were evaluated. The GFRP wire winding jacket prevented splitting of the lap-spliced reinforcement in the lap-spliced column and delayed buckling of the longitudinal reinforcement. The jacket protected the continuous reinforcement column against steel buckling and concrete spalling off and, thus, induced shear failure in the column. The GFRP wire winding jacket increased the failure drifts of both jacketed columns compared with those of the references.  相似文献   

12.
The paper deals with the size effect on shear behaviour of reinforced concrete beams strengthened with fiber reinforced polymer jackets. Continuous U-jackets were made of glass or carbon fiber fabrics and epoxy composite materials. Twelve uncracked or pre-cracked strengthened reinforced concrete beams and six beams without strengthening, all of them in 6 different sizes, were tested. The results indicate that fabric-epoxy continuous U-jackets have reduced the brittleness of the shear failure of beams, tensile strains in stirrups, and, in a significant way, also the width of shear cracks at the failure state. Although similar strengthening was used for both, uncracked and pre-cracked beams, activation of jackets significantly differed. While jacket strains and their strengthening effectiveness were affected by the sizes of uncracked, retrofitted beams, they remained almost constant in pre-cracked, repaired beams of varying sizes. In contrast to repaired beams, stirrups in retrofitted beams did not yield at failure. Degree of strengthening, defined as the ratio of strengthened-to-unstrengthened beam shear capacities, was studied. It was found out that consideration of the degree of strengthening would provide relations reflecting real behaviour of reinforced concrete beams strengthened with fiber reinforced polymer U-jackets or U-jacketed strips.  相似文献   

13.
This paper presents an experimental investigation on the web-crippling behavior in glass fiber reinforced polymer (GFRP) pultruded profiles with rectangular hollow section. There is evidence that GFRP pultruded profiles are particularly susceptible to transverse compressive loads, owing to the much lower mechanical properties in the direction transverse to the pultrusion axis. Although very relevant, the understanding about the web-crippling behavior in GFRP pultruded profiles is still very limited, as attested by the lack of information available in design codes and guidelines. End-two-flange (ETF) and interior-two-flange (ITF) loading conditions were adopted, with specimens seated on a bearing plate. Specimens were also placed on the ground with end (EG) or interior (IG) bearing load to simulate the loading conditions of floor joist members. The effects of the loading positions (end loading or interior loading) as well as the supporting conditions (on a bearing plate or on the ground) on the web crippling behavior are discussed. In addition, tests were performed with three different bearing lengths: 50 mm, 100 mm and 150 mm. Finite element models were developed to numerically simulate the tests performed in the experimental investigations in the terms of ultimate loads and failure modes. Based on the results of the parametric study, a number of design formulas proposed in this paper can be successfully employed as a design rule for predicting web crippling ultimate capacity of pultruded GFRP rectangular hollow sections under four loading and boundary conditions.  相似文献   

14.
Although several research studies have been conducted on simply supported concrete elements reinforced with fibre reinforced polymer (FRP) bars, there is little reported work on the behaviour of continuous elements. This paper reports the testing of four continuously supported concrete slabs reinforced with carbon fibre reinforced polymer (CFRP) bars. Different arrangements of CFRP reinforcement at mid-span and over the middle support were considered. Two simply supported concrete slabs reinforced with under and over CFRP reinforcement and a continuous concrete slab reinforced with steel bars were also tested for comparison purposes. All continuous CFRP reinforced concrete slabs exhibited a combined shear–flexure failure mode. It was also shown that increasing the bottom mid-span CFRP reinforcement of continuous slabs is more effective than the top over middle support CFRP reinforcement in improving the load capacity and reducing mid-span deflections. The ACI 440.1R–06 formulas overestimated the experimental moment at failure but better predicted the load capacity of continuous CFRP reinforced concrete slabs tested. The ACI 440.1R–06, ISIS–M03–07 and CSA S806-06 design code equations reasonably predicted the deflections of the CFRP continuously supported slabs having under reinforcement at the bottom layer but underestimated deflections of continuous slabs with over-reinforcement at the bottom layer.  相似文献   

15.
Innovative GFRP-bamboo-wood sandwich beams were developed and investigated experimentally and by modeling. The effects of the thickness of the GFRP and bamboo layers on the overall structural performance in bending were clarified. It was shown that an increase of thickness of the bamboo and GFRP layers could significantly increase the flexural stiffness and ultimate load of the sandwich beams. ANSYS was used to parametrically analyze the material efficiency and to obtain optimal solutions for the thickness of the GFRP, wood, and bamboo layers. The total depth of 60 mm and the thickness of 6 mm for bamboo and of 4.5 mm for GFRP presented the best material efficiency in terms of stiffness enhancement. A simplified model based on Timoshenko beam theory was proposed to predict the load-deflection behavior of the sandwich beams, where the section transformation method was used to calculate the stress distribution along the depth of the sandwich beams. The calculated results showed good correlation with the experimental and numerical results. Design optimization in terms of self-weight and cost of the proposed sandwich beam was conducted using MATLAB and ANSYS, and the optimized thicknes was obtained with minimized self-weight, cost, and acceptable mechanical performance.  相似文献   

16.
In this paper, a simple and innovative foam-filled lattice composite panel is proposed to upgrade the peak load and energy absorption capacity. Unlike other foam core sandwich panels, this kind of panels is manufactured through vacuum assisted resin infusion process rather than adhesive bonding. An experimental study was conducted to validate the effectiveness of this panel for increasing the peak strength. The effects of lattice web thickness, lattice web spacing and foam density on initial stiffness, deformability and energy absorbing capacity were also investigated. Test results show that compared to the foam-core composite panels, a maximum of an approximately 1600% increase in the peak strength can be achieved due to the use of lattice webs. Meanwhile, the energy absorption can be enhanced by increasing lattice web thickness and foam density. Furthermore, by using lattice webs, the specimens had higher initial stiffness. A theoretical model was also developed to predict the ultimate peak strength of panels.  相似文献   

17.
The assessment of the effectiveness of the fiber reinforced polymer (FRP) confinement on rectangular reinforced concrete (RC) columns with high aspect ratio (wall-like) still represents an unresolved issue. The present paper aims at providing more experimental evidence about the behavior of such members confined with both uni-directional and quadri-directional glass FRP laminates. Particular attention is devoted to issues related to the premature failure of confining fibers experimentally observed in wall-like columns. Test results on nine axially loaded columns are herein presented; emphasis is also given to the analysis of FRP strain profiles along the sides of the cross-section. The analysis of test results highlights that glass FRP (GFRP) confinement could determine significant strength and ductility increases; the discussion of failure modes points out that the failure of GFRP confined wall-like columns is controlled by the shape of the cross-section and occurs at transverse strains in the jacket much lower than those ultimate of the fibers. Theoretical–experimental comparisons are performed using some available models for strength prediction of such members.  相似文献   

18.
Over the last decade, an extreme increase in the application of fiber reinforced polymers (FRPs) for strengthening of reinforced concrete (RC) structures has been observed. The most common technique for strengthening of RC members utilizing FRP reinforcements is externally bonded reinforcement (EBR) technique. Despite certain benefits of the technique such as simple and rapid installation, the main problem which has greatly hampered the use of EBR method is premature debonding of FRP composite from concrete substrate. Recently, grooving method (GM) has been introduced as an alternative to conventional EBR technique. Grooving with the special technique of externally bonded reinforcement on grooves (EBROG) has yielded promising results in postponing or, in some cases, completely elimination of undesirable debonding failure in flexural/shear strengthened RC beams. Consequently, the main intention of the current study is to make a comparison between FRP-to-concrete bond behavior of EBR and EBROG techniques by means of single-shear bond tests. To do so, CFRP sheets were adhered to 16 concrete prism specimens using EBR and EBROG techniques. The specimens were then subjected to single-shear bond test and the results were compared. A non-contact, full field deformation measurement technique, i.e. particle image velocimetry (PIV) was utilized to investigate the bond behavior of the strengthened specimens. Successive digital images were taken from each specimen undergoing deformation during the test process. Images were then analyzed utilizing PIV method and load–slip behavior as well as slip and strain profiles along the strengthening CFRP strips were reported. Experimental results of the current study strongly verify the capability of GM for strengthening RC members to completely eliminate the debonding failure.  相似文献   

19.
The present work is concerned with the study of the damage behaviour of a composite material based on glass fibre reinforced polymer (GFRP). The main goal is to predict the rupture force using model equations that combine enough mathematical simplicity to allow their usage in engineering problems with the capability of describing a complex nonlinear mechanical behaviour. A model for tensile developed within the framework of Continuum Damage Mechanics that accounts for the effect of the load rate and temperature of the system is proposed and analyzed. The predicted values of tensile stress for different values of the load rate and temperature are compared with experimental data, showing a good agreement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号