首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Background/PurposeRubber nanocomposites have been widely used in many engineering fields due to their unique properties such as high elasticity and viscoelasticity. Much attention has been paid to the viscoelasticity of rubbers because it directly relates to the performance of the rubber products.MethodsBased on the micromechanical theory, the finite element method is used to analyze the effect of elastic modulus and volume content of spring-shape nanofillers on the dynamic viscosity of composites.ResultsThe simulation results show that there is an optimal elastic modulus of spring-shape nanofillers to make the loss factor a minimum. There is a threshold value of spring-shape nanofiller content for the dissipation energy density of composite.ConclusionThe elastic modulus of spring-shape nanofillers has a large effect on the loss factor of composites. The selection of elastic modulus of spring-shape nanofillers is critical for applications of composites. The efficiency of spring-shape nanofillers in reducing the dynamic viscosity of composites is so high that volume content of spring-shape nanofillers as low as 0.1% can greatly reduce the loss factor of composites with bonding interface.  相似文献   

2.
Torsion tests were conducted on unidirectional carbon/epoxy laminated plates. Preliminary finite element analyses showed that the specimen geometry selected avoided pronounced geometric non-linearity and ensured that a significant volume of material would be under a high fraction of the maximum shear stress. Furthermore, the clear prevalence of in-plane shear stresses allowed the development of a simplified data analysis model. Calculated shear-stress strain curves were consistent with the results of tensile tests on angle-ply coupons, despite lower failure stresses that may have been caused by surface defects or by spurious transverse tensile stresses. Nevertheless, the unidirectional plate torsion test is worthy of further research, given the structural relevance of torsional loads and the problems of in-plane shear tests methods.  相似文献   

3.
A numerical method is developed to model shear-strengthening of reinforced concrete beam by using fiber reinforced polymer (FRP) composites. Tensile crack is simulated by a non-linear spring element with softening behavior ahead of the crack tip to model the cohesive zone in concrete. A truss element is used, parallel to the spring element, to simulate the energy dissipation rate by the FRP. The strain energy release rate is calculated directly by using a virtual crack closure technique. It is observed that the length of the fracture process zone (FPZ) increases with the application of FRP shear-strengthening. The present model shows that the main diagonal crack is formed at the support in the control beam while it appears through the shear span in the shear-strengthened beam. Another important observation is that the load capacity increases with the number of CFRP sheets in the shear span.  相似文献   

4.
The healing process of long bones such as the tibia was simulated on the basis of a mechanoregulation theory by taking blood vessel growth into consideration. The tissue differentiation process of calluses by taking into consideration blood vessel growth was simulated by a user subroutine program based on the mechanoregulation model and a diffusion equation. Composite bone plates made of a plain weave carbon/epoxy composite (WSN3k) and a plain weave glass/polypropylene composite (Twintex) were applied to the fracture site to investigate the effect of plate modulus on the healing performance. The simulation results revealed that the flexible composite bone plate made of Twintex [0]18, which had a slightly higher Young’s modulus than a cortical bone, provided the highest healing performance. Moreover, it was found that the effect of the plate modulus on the healing performance reduced when the blood vessel growth at the fracture site was considered, which reflected a more realistic bone healing process.  相似文献   

5.
Recent experimental tests and numerical simulations about the fire resistance behaviour of CFRP-strengthened RC beams proved that CFRP strengthening systems are able to attain considerable fire endurance, provided that adequate fire protection systems are used. In a fire event, even though a CFRP laminate may rapidly debond from the central part of the beam in which it is installed, if sufficiently thick insulation is applied in the anchorage zones, the laminate transforms into a “cable” fixed at the extremities, thus maintaining a considerable contribution to the mechanical response of the strengthened beam. This paper presents experimental and numerical investigations on CFRP-strengthened RC beams with the objective of understanding in further depth their fire resistance behaviour, namely the influence of the above mentioned “cable” mechanism on the mechanical response of the beams. The experimental campaign, performed at ambient temperature, comprised 4-point bending tests on RC beams strengthened with CFRP laminates according to either the EBR or the NSM techniques, in both cases fully or partially (only at the anchorages, thus simulating the cable mechanism) bonded to the soffit of the beams. For the test conditions used in this study, for both types of strengthening systems, partially bonding the CFRP laminates did not affect the stiffness of the beams and caused only a slight reduction of their strength (6–15%). The numerical study comprised the simulation of the structural response of all beams tested. Non-linear finite element models were developed in Atena commercial package, in which a smeared cracked model was adopted to simulate concrete and appropriate bond-slip constitutive relations were defined for the CFRP-concrete interfaces. A very good agreement was obtained between experimental data and numerical results, providing further validation to the “cable” mechanism and the possibility of taking it into account when designing fire protection systems for CFRP-strengthened RC beams.  相似文献   

6.
A combined optical-thermal model is presented for near-infrared laser heating of carbon fibre reinforced thermoplastic composites in an automated tape placement process. For the first time a three dimensional ray tracing model is presented for a near-infrared laser tape placement process which captures the unique anisotropic scattering behaviour of the composite. Predicted irradiance distributions on the composite are subsequently applied to a 2D non-linear finite element thermal model. It is shown that a shadow is present in the process and causes a significant drop in temperature prior to the consolidation zone. The effect of various source and surface model simplifications was also studied. The modelled temperature profiles agree well with experimental data. Substrate fibre orientation was investigated and found to have only a small influence on the temperature history.  相似文献   

7.
A three-dimensional representative volume element (RVE) of unidirectional composites with both randomly distributed fibers and periodic geometry was generated using DIGIMAT-FE software. Finite element analysis of the stress transfer mechanisms around a fiber break in the RVE was performed via ABAQUS/Standard. The influences of distance to the broken fiber, fiber/matrix stiffness ratio and fiber volume fraction on the stress transfer process of intact fibers were discussed for the case of perfect fiber/matrix adhesion. The study shows that the nearest fibers and the second nearest fibers share the stress released from the broken fiber. The stress transfer coefficient and the ineffective stress transfer length of the nearest fibers was found to increase with the increasing distance to the broken fiber and the stiffness ratio, while decrease with the increasing fiber volume fraction. However, the trends in the two stress transfer parameters of the second nearest fibers are slightly different from those of the nearest fibers due to the random distribution of other intact fibers.  相似文献   

8.
This study numerically simulates strain-rate dependent transverse tensile failure of unidirectional composites. The authors’ previous study reported that the failure mode depends on the strain rate, with an interface-failure-dominant mode at a relatively high strain rate and a matrix-failure-dominant mode at relatively low strain rate. The present study aims to demonstrate this failure-mode transition by a periodic unit-cell simulation containing 20 fibers located randomly in the matrix. An elasto-viscoplastic constitutive equation that involves continuum damage mechanics regarding yielding and cavitation-induced brittle failure is used for the matrix. A cohesive zone model is employed for the fiber–matrix interface, considering mixed-mode interfacial failure. For the results, the relationship between failure modes and the strain rate is consistent with the authors’ previous studies.  相似文献   

9.
In the last few decades, the usages of plant sources-based stiff fillers as reinforcement material in polymer composites have attracted significant interests of researchers. The crystalline part of the semicrystalline cellulose chains as found in the plant cell walls represents the most highly potential reinforcing agents for polymer. This review systematically covers the extraction of nano-sized cellulose crystals from plant cell wall which involving the applications of several highly effective techniques. The topic about the derivation of products functionality at each stage as well as their influences on the final reinforcing capability is also covered. Apart from these, a detailed overview of current knowledge on the surface modification of nanocellulose has been provided also. Inasmuch, this paper is desired to encourage the emergence of preparation of cellulose derivative nanocrystals with controlled morphology, structure and properties, so that enable positive development of biocompatible, renewable and sustainable reinforcing materials for polymer composites field.  相似文献   

10.
In the present study, graphene nanoribbon was prepared through unzipping the multi walled carbon nanotubes, and its reinforcing effect as a filler to the silicone rubber was further investigated. The results showed that carbon nanotubes could be unzipped to graphene nanoribbon using strong oxidants like potassium permanganate and sulfuric acid. The prepared graphene nanoribbon could homogeneously disperse within silicone rubber matrix using a simple solution mixing approach. It was also found from the thermogravimetric analysis curves that the thermal stability of the graphene nanoribbon filled silicone rubber nanocomposites improved compared to the pristine silicone rubber. Besides, with the incorporation of the nanofiller, the mechanical properties of the resulting nanocomposites were significantly enhanced, in which both the tensile stress and Young’s modulus increased by 67% and 93% respectively when the mass content of the graphene nanoribbon was 2.0 wt%. Thus it could be expected that graphene nanoribbon had large potentials to be applied as the reinforcing filler to fabricate polymers with increased the thermal and mechanical properties.  相似文献   

11.
The thermomechanical properties of epoxy filled with two different types of silica nanofillers: spherical nanoparticles and nanofibers were investigated as a function of silica nanofiller aspect ratio and concentration. Results indicated that at room temperature and at 8.74% silica nanofiber concentration (by volume) the thermal conductivity of epoxy increased twofold and coefficient of thermal expansion (CET) decreased by ∼40%. Silica nanofiber filled epoxy showed 1.4 times greater CET and 1.5 times greater thermal conductivity compared to spherical nanoparticle filled epoxy. The significant changes observed in thermomechanical properties of silica nanofiber filled epoxy were attributed to its high aspect ratio by constraining the polymer matrix as well as reducing the phonon scattering due to the formation of a continuous fiber network within the matrix. In addition to being electrically insulating, the improved properties of silica nanofiber filled epoxy make it an extremely attractive material as underfill and encapsulant in advanced electronic packaging industry.  相似文献   

12.
The micromechanical damage and strength of discontinuous fiber-reinforced polymer matrix composites was simulated by the Spring Element Model (SEM), and SEM was compared with Periodic Unit-Cell (PUC) simulation to clarify the potential of SEM. Tensile failure simulations indicate that SEM can be effectively used to predict the strength of long discontinuous fiber reinforced composites. The transition between matrix cracking mode and fiber breaking mode is also discussed to clarify the fiber length at which SEM can be used to predict strength. In addition, the strengths predicted with SEM are compared with the results of experiments on long discontinuous fiber-reinforced thermoplastic composites.  相似文献   

13.
A series of nanosilica (denoted as nano-SiO2) surface-capped with organic modifiers hexamethyldisilazane (denoted as HMDS; molecular formula: C6H19NSi2) and KH570 (molecular formula: C10H20O5Si) containing CC double bond were prepared by in situ surface-modification method. As-obtained nano-SiO2 particles were characterized by Fourier transform infrared spectrometry and transmission electron microscopy, and they were also used to reinforce silicone rubber (denoted as SR) in order to improve the mechanical properties. Moreover, a universal material testing machine was performed to determine the mechanical properties of the SR-matrix nanocomposites. Results showed that the surface properties of nano-SiO2 can be adjusted by changing the ratio of these modifiers. The tensile strength, tear strength and elongation at break of nano-SiO2/SR nanocomposites are comparable to or even better than those of R-106/SR nanocomposite (R-106 refers to commercially obtained fumed SiO2 nanoparticles that was modified with silane coupling agent). The mechanical strength of nano-SiO2/SR nanocomposites especially for tear strength largely improve with adding a small amount of CC content of the surface-capped nano-SiO2. More importantly, it could be feasible to manipulate the mechanical properties of silicone rubber by properly adjusting the dosages of surface-modifiers HMDS and KH570 during the preparation of in situ surface-capped nanosilica, which could be of special significance to developing high performance SR-matrix nanocomposites.  相似文献   

14.
The latex technology is an innovative alternative for the preparation of composites of natural rubber (NR) and thermally reduced graphite oxide (TRGO). To achieve an improvement of material properties is indispensable to prepare stable suspensions of TRGO. In this work the influence of two surfactants, such as sodium dodecyl sulfate (SDS), as ionic, and Pluronic F 127 as non-ionic surfactant, on the dispersion of TRGO in NR latex and the mechanical and physical properties of the composites were studied. The results showed that the SDS surfactant is ideal for preparing latex NR/TRGO nanocomposite. An optimum dispersion of the nanoparticles in the polymer matrix was achieved in the presence of SDS, as reflected in a considerable improvement of the physical and mechanical properties of the material. Thus, the nanocomposites with 3 phr of TRGO exhibited an improvement of nearly 400% in the maximum strength and an electrical percolation threshold with values around 10−6 S/cm, above the static limit.  相似文献   

15.
This paper is to develop a simple micromechanics-based model taking account of progressive damaging for carbon black (CB) filled rubbers. The present model constitutes of the instantaneous Young's modulus and Poisson's ratio characterizing rubber-like material, a double-inclusion (DI) configuration considering the absorption of rubber chains onto CB particles, and the incremental Mori-Tanaka formula to compute the effective stress–strain relations. The progressive damage in filled rubbers is described by the DI cracking, which is represented by the remaining load–carrying capacity. The present predictions are capable of embodying the well-known S-shaped response of filled rubbers, and also verified by the comparison with the experimental and analytical results. Moreover, strain localization effect is clearly demonstrated by finite element method (FEM) simulations, and reaches a decisive interpretation to the complicated synergic micro-mechanisms between hard fillers and soft phase in such flexible composites.  相似文献   

16.
A representative elementary volume (REV) in epoxy syntactic foams was generated to incorporate randomly distributed glass microballoons that followed a log-normal size distribution. Finite element modelling of the REV foam was developed and experimentally validated to investigate the elastic behaviour and failure mechanism in the foams with different microballoon volume fractions (V). The localised stresses concentrate in various zones within the foam, and can cause the vertical splitting fracture of microballoons and the micro-crack formation in the matrix. Dependent on the microballoon volume fraction, micro-cracks can propagate to join adjacent micro-cracks and voids left by fractured microballoons, and finally develop into a macro-crack either in the preferred longitudinal (for low V) or diagonal (for high V) directions. This is consistent with the macroscopic observations of the fracture process in the foam specimens. It was also found that elastic characteristics of the foam vary with microballoon volume fractions.  相似文献   

17.
The rising concern towards the reduction in the use of petroleum-based, non-renewable resources and the need for more versatile polymer-based composite materials have led to increasing interests on natural polymer composites filled with natural organic fillers, i.e. coming from renewable and biodegradable sources. This paper reviews wood flour and other lignocellulosic fibres filled rubber composites, including cellulosic rubber composites, cellulosic thermoplastic elastomers, nanocellulose based rubber nanocomposites, with the aims at providing the most state of the art information for directing further scientific research, possible commercialization and design of cellulosic rubber composites. It has been found that 1) the surface properties of natural cellulose, hence the compatibility and interface of the natural cellulose and matrix rubber/plastics, are crucial for the successful development of the composites, such, physical and chemical modification and additives have been widely attempted to improve the incompatibility and poor interfacial adhesion between the filler and matrix; 2) the curing characteristics, mechanical properties, thermal stability and morphologies of the composites are complex but closely related to not only the interfacial properties, but also the compositions (e.g. the concentration of cellulosic materials) and other processing parameters; 3) the nature of hydrophilic cellulosic and hydrophobic matrix rubber and/or plastics requires an accurate introduction of coupling agent, one end of its structure shall be compatible to hydrophilic and the other to hydrophobic. The reviews on the main paths and results of study on the advanced nanocellulose reinforced rubber nanocomposites and sandwiches indicate much potentials and needs for further in-depth studies.  相似文献   

18.
In this study, variations in thickness and fiber volume fraction are investigated as causes of elastic strain inhomogeneity in composite laminates under an applied transverse load. Standard carbon/epoxy tensile specimens were fabricated from unidirectional pre-impregnated material using two different manufacturing techniques that produced two different levels of surface roughness. Fiber volume fraction variation was computed by analyzing optical micrographs of the samples. During loading and unloading of the samples two-dimensional surface strain fields were measured on the specimen using digital image correlation. It was shown that in both cases the strain in the specimen is not uniform, as is generally assumed. Using finite element simulations the effects of fiber volume fraction variation and thickness variation were modeled individually and in combination. The simulations agree well with the experimental results and suggest that thickness variations are the dominant mechanisms involved in this elastic strain inhomogeneity.  相似文献   

19.
This paper describes a mechanism-based multi-scale model for life prediction of high temperature polymer matrix composites (HTPMC) under thermo-oxidative aging conditions. The multi-scale model incorporates molecular level damage such as inter-crosslink chain scission in a thermoset polymer due to thermo-oxidative aging of the polymer resin. The degradation of inter-laminar stress depends on remaining inter-crosslink density of thermo-set polymer in fiber/matrix interface region subjected to thermo-oxidative aging environment. The degradation of inter-laminar shear stress of thermo-oxidatively aged unidirectional IM-7/PETI-5 composite specimens at 300 °C was modeled using an in-house test-bed FEA code (NOVA-3D). A micromechanics based viscoelastic cohesive layer model was used to model delamination. The model is fully rate dependent and does not require a pre-assigned traction-separation law. Viscoelastic regularization of the constitutive equations of the cohesive layer used in this model not only mitigates numerical instability, but also enables the analysis to follow load-deflection behavior beyond peak failure load. The model was able to successfully simulate delamination failure in thermo-oxidatively aged unidirectional IM-7/PETI-5 composite, and the model predictions were verified using test data.  相似文献   

20.
High pressure rubber hose is in the lamination structure composed of pure rubbers and braided fabric composite layers to have the sufficient strength against the excessive radial expansion and the large deformation, in which the braided fabric layer is woven with wrap and fill tows inclined to each other with the predefined helix angle in the complex periodic pattern. The consideration of detailed geometry of braided fabric layer in the numerical analysis leads to a huge number of finite elements so that the braided fabric layer has been traditionally simplified as an isotropic cylindrical one with the homogeneous isotropic material properties of braid spun tread. However, this simple model leads to the numerical prediction and design with the questionable reliability. In this context, this paper addresses the development of an in-house module, which is able to be interfaced with commercial FEM code, for the reliable large deformation analysis of the reinforced rubber hose with the element number at the level of the traditional simple model. The in-house module is able to not only automatically generate 3-D unit cell (or RVE) model of the braided fabric layer but evaluate the homogenized orthotropic material properties by automatically performing a serious of unit cell finite element analyses based on the superposition method. The validity of the in-house module and the reliability of the homogenization method are verified through the illustrative numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号