首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The DNA ploidy pattern and amplification of ERBB and ERBB2 genes were examined in paraffin-embedded tissue from gastric carcinomas using flow cytometry and a slot-blot hybridization technique. The incidence of aneuploidy in well differentiated adenocarcinomas (56%) was significantly higher (p less than 0.05) than that in poorly differentiated adenocarcinomas (21%). The DNA ploidy pattern was not remarkably different between the primary tumors and metastatic deposits in lymph nodes. Of the nine specimens having an aneuploid stem cell line in the primary tumor and/or in metastases, three showed ERBB2 gene amplification and one showed ERBB gene amplification. The incidence of epidermal growth factor (EGF) immunoreactivity in tumor cells showed no difference between diploid and aneuploid tumors. These findings indicate that aneuploidy is frequently associated with amplification of ERBB and ERBB2 genes.  相似文献   

3.
Zeng S  Yang Y  Tan Y  Lu C  Pan Y  Chen L  Lu G 《Molecular biology reports》2012,39(8):7911-7917
ERBB2/HER2/NEU, a member of the epidermal growth factor receptor family, is overexpressed in more than 25 % of non-small cell lung cancer and is considered to be a significant and independent prognostic factor in lung cancer. Here we generated a lung specific HER2 overexpressing transgenic mouse model. In this model, HER2 was driven by the human surfactant protein-C promoter to investigate the role of the HER2 oncogene in pulmonary carcinogenesis and progression. Notably, significant pathological changes, including lymphocyte infiltration and mesenchymal cells hyperplasia, were found in the lung tissue of transgenic mice aged from 4 to 12 months. The occurrence and severity of those lesions increased as the mice aged. Some inflammatory factors, such as tumor necrosis factor, interleukin 1 and interleukin 6, were upregulated in lung tissue of transgenic mice compared with that of wild-type mice, implying that long-term HER2 overexpression could induce serious lung inflammation and some precancerous lesions. This model would be useful for studying the mechanism of HER2 involvement in lung carcinogenesis and for understanding the relationship between carcinogenesis and inflammation.  相似文献   

4.
The DNA ploidy pattern and amplification of ERBB and ERBB2 genes were examined in paraffinembedded tissue from gastric carcinomas using flow cytometry and a slot-blot hybridization technique. The incidence of aneuploidy in well differentiated adenocarcinomas (56%) was significantly higher (p<0.05) than that in poorly differentiated adenocarcinomas (21%). The DNA ploidy pattern was not remarkably different between the primary tumors and metastatic deposits in lymph nodes. Of the nine specimens having an aneuploid stem cell line in the primary tumor and/or in metastases, three showed ERBB2 gene amplification and one showed ERBB gene amplification. The incidence of epidermal growth factor (EGF) immunoreactivity in tumor cells showed no difference between diploid and aneuploid tumors. These findings indicate that aneuploidy is frequently associated with amplification of ERBB and ERBB2 genes.  相似文献   

5.
Defective autophagy has been implicated in mammary tumorigenesis, as the gene encoding the essential autophagy regulator BECN1 is deleted in human breast cancers and Becn1+/− mice develop mammary hyperplasias. In agreement with a recent study, which reports concurrent allelic BECN1 loss and ERBB2 amplification in a small number of human breast tumors, we found that low BECN1 mRNA correlates with ERBB2-overexpression in breast cancers, suggesting that BECN1 loss and ERBB2 overexpression may functionally interact in mammary tumorigenesis. We now report that ERBB2 overexpression suppressed autophagic response to stress in mouse mammary and human breast cancer cells. ERBB2-overexpressing Becn1+/+ and Becn1+/− immortalized mouse mammary epithelial cells (iMMECs) formed mammary tumors in nude mice with similar kinetics, and monoallelic Becn1 loss did not alter ERBB2- and PyMT-driven mammary tumorigenesis. In human breast cancer databases, ERBB2-expressing tumors exhibit a low autophagy gene signature, independent of BECN1 mRNA expression, and have similar gene expression profiles with non-ERBB2-expressing breast tumors with low BECN1 levels. We also found that ERBB2-expressing BT474 breast cancer cells, despite being partially autophagy-deficient under stress, can be sensitized to the anti-ERBB2 antibody trastuzumab (tzb) by further pharmacological or genetic autophagy inhibition. Our results indicate that ERBB2-driven mammary tumorigenesis is associated with functional autophagy suppression and ERBB2-positive breast cancers are partially autophagy-deficient even in a wild-type BECN1 background. Furthermore and extending earlier findings using tzb-resistant cells, exogenously imposed autophagy inhibition increases the anticancer effect of trastuzumab on tzb-sensitive ERBB2-expressing breast tumor cells, indicating that pharmacological autophagy suppression has a wider role in the treatment of ERBB2-positive breast cancer.  相似文献   

6.
《Autophagy》2013,9(4):662-676
Defective autophagy has been implicated in mammary tumorigenesis, as the gene encoding the essential autophagy regulator BECN1 is deleted in human breast cancers and Becn1+/? mice develop mammary hyperplasias. In agreement with a recent study, which reports concurrent allelic BECN1 loss and ERBB2 amplification in a small number of human breast tumors, we found that low BECN1 mRNA correlates with ERBB2-overexpression in breast cancers, suggesting that BECN1 loss and ERBB2 overexpression may functionally interact in mammary tumorigenesis. We now report that ERBB2 overexpression suppressed autophagic response to stress in mouse mammary and human breast cancer cells. ERBB2-overexpressing Becn1+/+ and Becn1+/? immortalized mouse mammary epithelial cells (iMMECs) formed mammary tumors in nude mice with similar kinetics, and monoallelic Becn1 loss did not alter ERBB2- and PyMT-driven mammary tumorigenesis. In human breast cancer databases, ERBB2-expressing tumors exhibit a low autophagy gene signature, independent of BECN1 mRNA expression, and have similar gene expression profiles with non-ERBB2-expressing breast tumors with low BECN1 levels. We also found that ERBB2-expressing BT474 breast cancer cells, despite being partially autophagy-deficient under stress, can be sensitized to the anti-ERBB2 antibody trastuzumab (tzb) by further pharmacological or genetic autophagy inhibition. Our results indicate that ERBB2-driven mammary tumorigenesis is associated with functional autophagy suppression and ERBB2-positive breast cancers are partially autophagy-deficient even in a wild-type BECN1 background. Furthermore and extending earlier findings using tzb-resistant cells, exogenously imposed autophagy inhibition increases the anticancer effect of trastuzumab on tzb-sensitive ERBB2-expressing breast tumor cells, indicating that pharmacological autophagy suppression has a wider role in the treatment of ERBB2-positive breast cancer.  相似文献   

7.
8.
Approximately 25% of breast cancers overexpress and depend on the receptor tyrosine kinase ERBB2, one of 4 ERBB family members. Targeted therapies directed against ERBB2 have been developed and used clinically, but many patients continue to develop resistance to such therapies. Although much effort has been focused on elucidating the mechanisms of acquired resistance to ERBB2-targeted therapies, the involvement of ERBB4 remains elusive and controversial. We demonstrate that genetic ablation of ERBB4, but not ERBB1-3, led to apoptosis in lapatinib-resistant cells, suggesting that the efficacy of pan-ERBB inhibitors was, at least in part, mediated by the inhibition of ERBB4. Moreover, ERBB4 was upregulated at the protein level in ERBB2+ breast cancer cell lines selected for acquired lapatinib resistance in vitro and in MMTV-Neu mice following prolonged lapatinib treatment. Knockdown of ERBB4 caused a decrease in AKT phosphorylation in resistant cells but not in sensitive cells, suggesting that ERBB4 activated the PI3K/AKT pathway in lapatinib-resistant cells. Importantly, ERBB4 knockdown triggered apoptosis not only in lapatinib-resistant cells but also in trastuzumab-resistant cells. Our results suggest that although ERBB4 is dispensable for naïve ERBB2+ breast cancer cells, it may play a key role in the survival of ERBB2+ cancer cells after they develop resistance to ERBB2 inhibitors, lapatinib and trastuzumab.  相似文献   

9.
Approximately 25% of breast cancers overexpress and depend on the receptor tyrosine kinase ERBB2, one of 4 ERBB family members. Targeted therapies directed against ERBB2 have been developed and used clinically, but many patients continue to develop resistance to such therapies. Although much effort has been focused on elucidating the mechanisms of acquired resistance to ERBB2-targeted therapies, the involvement of ERBB4 remains elusive and controversial. We demonstrate that genetic ablation of ERBB4, but not ERBB1-3, led to apoptosis in lapatinib-resistant cells, suggesting that the efficacy of pan-ERBB inhibitors was, at least in part, mediated by the inhibition of ERBB4. Moreover, ERBB4 was upregulated at the protein level in ERBB2+ breast cancer cell lines selected for acquired lapatinib resistance in vitro and in MMTV-Neu mice following prolonged lapatinib treatment. Knockdown of ERBB4 caused a decrease in AKT phosphorylation in resistant cells but not in sensitive cells, suggesting that ERBB4 activated the PI3K/AKT pathway in lapatinib-resistant cells. Importantly, ERBB4 knockdown triggered apoptosis not only in lapatinib-resistant cells but also in trastuzumab-resistant cells. Our results suggest that although ERBB4 is dispensable for naïve ERBB2+ breast cancer cells, it may play a key role in the survival of ERBB2+ cancer cells after they develop resistance to ERBB2 inhibitors, lapatinib and trastuzumab.  相似文献   

10.
11.
The four members of the epidermal growth factor receptor (EGFR/ERBB) family form homo- and heterodimers which mediate ligand-specific regulation of many key cellular processes in normal and cancer tissues. While signaling through the EGFR has been extensively studied on the molecular level, signal transduction through ERBB3/ERBB4 heterodimers is less well understood. Here, we generated isogenic mouse Ba/F3 cells that express full-length and functional membrane-integrated ERBB3 and ERBB4 or ERBB4 alone, to serve as a defined cellular model for biological and phosphoproteomics analysis of ERBB3/ERBB4 signaling. ERBB3 co-expression significantly enhanced Ba/F3 cell proliferation upon neuregulin-1 (NRG1) treatment. For comprehensive signaling studies we performed quantitative mass spectrometry (MS) experiments to compare the basal ERBB3/ERBB4 cell phosphoproteome to NRG1 treatment of ERBB3/ERBB4 and ERBB4 cells. We employed a workflow comprising differential isotope labeling with mTRAQ reagents followed by chromatographic peptide separation and final phosphopeptide enrichment prior to MS analysis. Overall, we identified 9686 phosphorylation sites which could be confidently localized to specific residues. Statistical analysis of three replicate experiments revealed 492 phosphorylation sites which were significantly changed in NRG1-treated ERBB3/ERBB4 cells. Bioinformatics data analysis recapitulated regulation of mitogen-activated protein kinase and Akt pathways, but also indicated signaling links to cytoskeletal functions and nuclear biology. Comparative assessment of NRG1-stimulated ERBB4 Ba/F3 cells revealed that ERBB3 did not trigger defined signaling pathways but more broadly enhanced phosphoproteome regulation in cells expressing both receptors. In conclusion, our data provide the first global picture of ERBB3/ERBB4 signaling and provide numerous potential starting points for further mechanistic studies.  相似文献   

12.
13.

Background

Overexpression of the ERBB2 kinase is observed in about one-third of breast cancer patients and the dual ERBB1/ERBB2 kinase inhibitor lapatinib was recently approved for the treatment of advanced ERBB2-positive breast cancer. Mutations in the ERBB2 receptor have recently been reported in breast cancer at diagnosis and also in gastric, colorectal and lung cancer. These mutations may have an impact on the clinical responses achieved with lapatinib in breast cancer and may also have a potential impact on the use of lapatinib in other solid cancers. However, the sensitivity of lapatinib towards clinically observed ERBB2 mutations is not known.

Methodology/Principal Findings

We cloned a panel of 8 clinically observed ERBB2 mutations, established stable cell lines and characterized their sensitivity towards lapatinib and alternative ERBB2 inhibitors. Both lapatinib-sensitive and lapatinib-resistant ERBB2 mutations were observed. Interestingly, we were able to generate lapatinib resistance mutations in wt-ERBB2 cells incubated with lapatinib for prolonged periods of time. This indicates that these resistance mutations may also cause secondary resistance in lapatinib-treated patients. Lapatinib-resistant ERBB2 mutations were found to be highly resistant towards AEE788 treatment but remained sensitive towards the dual irreversible inhibitors CL-387785 and WZ-4002.

Conclusions/Significance

Patients harbouring certain ERBB2 kinase domain mutations at diagnosis may not benefit from lapatinib treatment. Moreover, secondary lapatinib resistance may develop due to kinase domain mutations. Irreversible ERBB2 inhibitors may offer alternative treatment options for breast cancer and other solid tumor patients harbouring lapatinib resistance mutations. In addition, these inhibitors may be of interest in the scenario of secondary lapatinib resistance.  相似文献   

14.
Overexpression and poor downregulation of ErbB receptor tyrosine kinases are associated with enhanced signaling and tumorigenesis. Attenuation of EGF-receptor (EGFR) signaling is mediated by endocytosis and ubiquitination by the E3-ligase Cbl. En route to lysosomes, but before incorporation of the EGFR into internal vesicles of MVBs, the EGFR undergoes Usp8-mediated deubiquitination. ErbB2 displays enhanced recycling back to the cell surface, and therefore we hypothesized that Usp8 is not part of the ErbB2 trafficking pathway. Here, we demonstrate, in the context of a chimeric EGFR-ErbB2 receptor, that (i) EGF induces pY1091 Cbl binding site-dependent K63-polyubiquitination of EGFR-ErbB2, (ii) Cbl is tyrosine phosphorylated upon stimulation of EGFR-ErbB2 wt and Y1091F mutant receptor, (iii) EGF-induced activation of EGFR-ErbB2 induces Usp8 tyrosine phosphorylation, and (iv) ubiquitination of the EGFR-ErbB2 wt and Y1091F mutant is enhanced upon coexpression of catalytically inactive Usp8-C748A in the presence and absence of EGF. We further show that Usp8 tyrosine phosphorylation upon stimulation of EGFR-ErbB2 is (a) independent of Y1091, (b) dependent on Src- and EGFR-ErbB2-kinase activity, (c) enhanced upon coexpression of Usp8-C748A, and (d) partly dependent on the Microtubule Interacting and Transport (MIT) domain of Usp8. Our findings demonstrate that Usp8 is part of the ErbB2 endosomal trafficking pathway.  相似文献   

15.
16.
We recently identified neuregulin‐1 (NRG1) as a novel target of Notch1 required in Notch‐dependent melanoma growth. ERBB3 and ERBB4, tyrosine kinase receptors specifically activated by NRG1, have been shown to be either elevated in melanoma cell lines and tumors or to be mutated in 20% of melanomas, respectively. While these data support key roles of NRG1 and its receptors in the pathogenesis of melanoma, whether ERBB3 and ERBB4 display redundant or exclusive functions is not known. Here, we show that ERBB3 and ERBB4 inhibition results in distinct outcomes. ERBB3 inhibition ablates the cellular responses to NRG1, results in AKT inactivation and leads to cell growth arrest and apoptotic cell death. In contrast, ERBB4 knockdown mildly affects cell growth, has no effects on cell survival and, importantly, does not alter the responses to NRG1. Finally, we identified ERBB2 as a key coreceptor in NRG1‐dependent ERBB3 signaling. ERBB2 forms a complex with ERBB3, and its inhibition recapitulates the phenotypes observed upon ERBB3 ablation. We propose that an NRG1‐ERBB3‐ERBB2 signaling unit operates in melanoma cells where it promotes growth and survival.  相似文献   

17.
Overexpression of ERBB2 or ERBB3 is associated with cancer development and poor prognosis. In this study, we show that reactive oxygen species (ROS) induce both ERBB2 and ERBB3 expression in vitro and in vivo. We also identify that miR‐199a and miR‐125b target ERBB2 and/or ERBB3 in ovarian cancer cells, and demonstrate that ROS inhibit miR‐199a and miR‐125b expression through increasing the promoter methylation of the miR‐199a and miR‐125b genes by DNA methyltransferase 1. These findings reveal that ERBB2 and ERBB3 expression is regulated by ROS via miR‐199a and miR‐125b downregulation and DNA hypermethylation.  相似文献   

18.
In 25–30% of cases of breast cancer tumors, the amplification of the chromosome fragment around ERBB2 underlies the increased expression of genes adjacent to ERBB2. The increased expression of genes within ERBB2-containing amplicons may impact not only the growth and development of the tumor, but also the sensitivity of the tumor to different types of anti-cancer therapies. The initial cause of the amplification and the exact borders of ERBB2-amplified chromosome fragment are still not completely characterized. No specific DNA sequences were found on the junction regions during intrachromosomal DNA amplification. We hypothesized that amplification borders can be specified by the structural peculiarities of DNA, rather than the particular DNA sequence. This study focused on the mapping of ERBB2 amplification borders in breast cancer and the search for unusual structural features of DNA at the borders of the identified amplicons. The copy number of ten genes adjacent to ERBB2 was evaluated by real time PCR in 162 breast cancer samples. Several ERBB2-containing amplicons of various lengths were revealed. In the majority of the analyzed samples, the borders of these amplicons were located within ZNFN1A3 and RARA genes. A bioinformatics analysis of the nucleotide sequence peculiarities around ERBB2 gene revealed the presence of AT-rich DNA regions with a high degree of flexibility. These regions were able to form stable secondary structures. Positions of these sites strongly coincide with the positions of the ERBB2-containing amplicon borders found in real time PCR experiments. Based on the obtained results, one can suppose that the structural features of DNA are involved in the formation of ERBB2-containing amplicon borders in breast cancer cells and the data are of importance for understanding the mechanisms of oncogene amplification.  相似文献   

19.
We have analyzed the spatial-temporal regulation of epidermal growth factor receptor (EGFR) phosphorylation by the orphan erbB2 receptor. It is shown that EGFR association with erbB2 is sufficient to prolong and enhance the net phosphorylation of EGFR, independent of the kinase activity of erbB2. This enhanced EGFR signaling was rather caused by erbB2-mediated retention of phosphorylated EGFR at the plasma membrane (PM), thereby preventing EGFR dephosphorylation and signal termination by endomembrane-bound protein tyrosine phosphatases (PTPs). EGF-induced EGFR internalization was indeed blocked in the presence of high levels of erbB2 or if cbl binding of EGFR was impaired. This erbB2-mediated blockage of the entry of activated EGFR into clathrin-coated vesicles could be alleviated by antibody-mediated disruption of the interaction between EGFR and erbB2. These results identify erbB2-mediated dominant trapping of phosphorylated EGFR at the PM as a mechanism that prolongs EGFR signaling, by sequestration of activated EGFR away from intracellular sites of high PTP activity.  相似文献   

20.
Capillary electrophoresis (CE) with a sieving buffer containing ethidium bromide was applied to the detection of PCR-amplified RFLP samples. With CE, in contrast to agarose gel electrophoresis, run times are short, i.e., typically less than 30 min, the capillary can be re-used, and full automation is feasible. The addition of ethidium bromide to the buffer system in conjunction with a field amplification injection technique led to increased sample detectability and resolution. Migration time precision was better than 0.2% RSD with a approximately 12-bp resolution for the DNA fragment sizes of interest. RFLP samples were analyzed for homo- or heterozygosity based on the presence of 500- and/or 520-bp DNA fragments. Special software was used to correct for run-to-run migration time variations, thus facilitating genotype assignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号