首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对条斑紫菜(Porphyra yezoen sis)离体细胞在含Fe2+培养条件下的生长发育进行了研究。在消毒海水培养基中添 加不同浓度的Fe2+,培养经酶解分离而获得的条斑紫菜单细胞。结果表明,低浓度的 Fe2+能促进其生长发育;而高浓度的Fe2+可以导致苗大量畸变,细胞变小,苗 反复崩解成单孢子。当Fe2+浓度达到50mg/L以上时,细胞完全致死。  相似文献   

2.
光质是影响藻类生长发育的重要因子。本文旨在研究栽培型条斑紫菜(Neopyropia yezoensis)自由丝状体在不同光质(白光、红光、蓝光、绿光)下生长率、形态、超微结构、色素含量及抗氧化酶活性的差异。结果显示:培养21 d后,白光显著提高条斑紫菜自由丝状体特定生长率和叶绿素a含量,其次是红光和绿光,蓝光最差。和白光组相比,蓝光组藻体藻红蛋白(PE)含量最高,红光、绿光组藻体藻蓝蛋白(PC)含量较高。白光组藻体正常黑褐色,细胞壁最厚。红、绿光组藻体绿色,直径和细胞壁厚度与白光组相近。蓝光组藻体鲜艳红色,直径最小,细胞壁最薄,且超微结构显示类囊体上质体小球数量最多。蓝光照射后,藻体丙二醛(MDA)含量最高,超氧化物歧化酶(SOD)活性最低。研究表明,白光最有利于条斑紫菜自由丝状体生长,其次是红光和绿光,蓝光则有不利影响。  相似文献   

3.
逆境胁迫对条斑紫菜生理生化指标的影响   总被引:12,自引:0,他引:12  
紫菜具有很强的抗逆能力,是研究植物抗逆性机理的良好材料。本文研究了盐胁迫、Cu^2 离子胁迫对条斑紫菜的生理生化效应。实验结果袁明,在两种胁迫条件下,条斑紫菜中甘露醇的含量增加.其中在45盐度海水中,甘露醇含量增幅最大.达200%;丙二醛(MDA)含量在胁迫初期迅速增加,且含量随胁迫程度增大而增多,增幅最高这300%,2小时后开始下降。在盐度、Cu^2 -离子胁迫下.甘露醇主要作为渗透调节剂参与抗逆反应,同时MDA含量的变化袁明自由基清除系统可能在抗逆反应中也起到重要作用。  相似文献   

4.
微粒体谷光甘肽硫转移酶(microsomal glutathione S-transferases,MGST)作为膜结合蛋白之一,具有谷光甘肽转移酶和过氧化物酶活性,在细胞及细胞器的抗氧化胁迫中扮演着重要角色,但MGST基因在紫菜(Pyropia yezoensis)中的鉴定与分析还未见报道。本文采用RACE-PCR方法首次克隆了条斑紫菜的微粒体GST基因的全长,命名为PyMGST3,同时利用生物信息学及实时定量PCR方法对该基因的序列及诱导表达特征进行了分析,并通过原核表达进一步验证了该基因的酶活性及在抗氧化胁迫中的作用。结果表明,PyMGST3基因的c DNA序列全长为681bp,其中开放阅读框长度417bp,5'-UTR长度80bp,3'-UTR长度184bp,在受到Cd~(2+)和Cu~(2+)胁迫时,上调表达;PyMGST3蛋白具有三个跨膜结构域及跨膜疏水区,与皱波角叉菜的MGST蛋白相似性最高为60%,与其它藻类的MGST蛋白的相似性较低;在大肠杆菌中表达及纯化后的PyMGST3蛋白具有谷光甘肽转移酶活性;此外,超表达PyMGST3蛋白的重组菌株提高了对抗Cd~(2+)和Cu~(2+)毒害的能力。这些结果暗示PyMGST3基因很可能在条斑紫菜遭遇重金属等引起的氧化胁迫时起到重要的保护作用。  相似文献   

5.
光照与温度对条斑紫菜(Neopyropia yezoensis)贝壳丝状体生长发育与壳孢子放散水平均具有重要影响.因温度对光强的协同效应以及各培养阶段对光强的需求不同,本文仅改变培养光强,研究了不同光照强度对条斑紫菜贝壳丝状体着生、生长、发育及壳孢子放散的影响,为育苗阶段光照强度管理提供数据支撑.在16℃下采用1.3~...  相似文献   

6.
1990年以来,采用多因子正交试验方法,对悬浮生长的条斑紫菜膨大藻丝即孢子囊技生长发育规律进行研究。通过细胞工程方法,建立悬浮培养的膨大藻丝无性系,并使该无性系长年大量繁殖。经过对膨大藻丝的生长发育调控,可使膨大藻丝适时,大量放散壳孢子。  相似文献   

7.
对冷藏的条斑紫菜叶状体在不同光照和温度条件下进行复苏实验。复苏的紫菜经海螺酶解离成为单细胞 ,通过染色检查其细胞活性并且将单细胞培养于适宜的条件下 ,观察其生长和发育状况 ,以了解不同复苏条件对冷藏叶状体细胞生理状态的恢复程度。结果表明 :(1)光照不是复苏的必要条件 ;(2 )温度对复苏很重要 ,2 5℃是条斑紫菜的致死复苏温度 ,10°~ 2 0℃是适宜的复苏温度。 (3)复苏时间随温度升高而减少。在 10℃的消毒海水中 ,至少需经历 2 d,才能达到完全复苏 ;15℃需 1.5d;2 0℃需 1d;2 3℃复苏时间可减少到 12 h。复苏主要是细胞吸水膨胀的过程 ,海水中已经存在足够的营养元素 ,紫菜细胞在一定的温度下复苏一段时间后 ,细胞活性恢复 ,酶解后细胞死亡率低 ,酶解后存活的单细胞在适当培养条件下 ,几乎可以全部发育成苗。生产上可以选择在较高温度下 ,短时间复苏即可大量出苗 ,实现生产上早出苗的目的。  相似文献   

8.
本实验利用酶解技术得到单个体细胞,较详细地研究了不同温度、光照强度对体细胞分化发育的影响,从而确定出体细胞培养的最佳条件,为进一步利用条斑紫菜体细胞育苗这一新技术打下了基础。  相似文献   

9.
条斑紫菜壳孢子幼苗非基部假根的生长   总被引:1,自引:1,他引:1  
用条斑紫菜壳孢子作材料,对室内(10~25℃,8~45μmolphotonm-2s-1,12L∶12D)萌发的壳孢子苗进行观察,结果是:10~20℃,壳孢子苗形态正常,只有最靠近基部的细胞长出假根;而25℃的不同光强下,相当比例的幼苗表现分段现象;每个藻段基部细胞有一个较大的液泡,细胞的长宽比接近1,从这一细胞长出假根的现象较普遍。假根长出的方向多数向着藻体的基部,个别向着藻体端部。非基部假根的产生有两个必要的条件:(a)壳孢子苗是形态嵌合体;(b)培养温度是25℃。这一现象在紫菜中首次报道,并对其出现的普遍性和产生机理进行了讨论。  相似文献   

10.
丙酮酸羧化酶(pyruvatecarboxylase,PYC)在非光合生物中催化丙酮酸羧化生成草酰乙酸(oxaloacetate,OAA),作为糖异生的第一步,在动物维持代谢稳态中具有重要作用。研究发现,PYC在光合生物中也发挥重要作用。为了探究PYC在潮间带大型海藻中的作用,我们从条斑紫菜叶状体中扩增获得PYC基因全长序列(命名为PyPYC),并分析了其序列特征。通过对系统进化树分析表明PyPYC与来自细菌的PYC具有较近亲缘关系。针对条斑紫菜叶状体生长环境所面临的碳源变化,设置了不同类型和不同浓度的无机碳培养条件,采用实时荧光定量(RT-qPCR)检测了该基因对这些无机碳源的响应。结果表明,高浓度的CO2能显著上调PyPYC基因的表达,而高浓度的HCO3-对其影响较小。由此,我们初步认为,当紫菜叶状体暴露在空气中时, PYC在其无机碳利用中发挥一定作用。  相似文献   

11.
将新鲜幼嫩条斑紫菜叶状体在不同温度和通风状态下,干燥处 理后冻存于-20℃冰箱中。30d后酶解成单细胞,检查其活性和再生能力。结果表明,条斑紫 菜含水量为81.8%,在含水35%时冻藏可保持最大的活性。适宜的含水量范围是30%~40%。冷 冻前含水量高于40%时,复苏后细胞外观虽然正常,但酶解后存活率低,发育迟缓;冷冻前 含水量低于30%时,复苏后在叶状体上可见成片细胞死亡,色素弥散,形成红色斑块。酶解 后细胞死亡率高。阴干处理期间,温度的变化(10℃~25℃)对冷冻后的紫菜细胞活力没有明 显影响。  相似文献   

12.
该文分别选用不同浓度的海螺酶 ;葡萄糖、蔗糖、甘露醇、山梨醇、氯化钠 5种渗透剂 ;维生素 C和甘露醇 2种抗氧化剂 ;对条斑紫菜酶解单细胞的成活率进行了研究。实验结果表明 :用浓度为 10 %的海螺酶酶解条斑紫菜 ,成活率最高 ;选用 2 mol/ L葡萄糖作渗透剂 ,效果最好 ,成活率达85.2 % ;加入抗氧化剂对细胞成活率没有影响  相似文献   

13.
本实验利用酶解技术得到单个体细胞,较详细地研究了不同温度、光照强度对体细胞分化发育的影响,从而确定出体细胞培养的最佳条件,为进一步利用条斑紫菜体细胞育苗这一新技术打下了基础。  相似文献   

14.
我国的紫菜生产已有200多年的悠久历史,但是全人工栽培紫菜到本世纪60年代才开始,而条斑紫菜的人工栽培则始于70年代。目前我国条斑紫菜栽培面积最大的是江苏省沿海,该地区滩涂广阔平坦,适合紫菜生长,现在紫菜已成为群众性生产的海产品之一。 条斑紫菜生活史分丝状体和叶状体两个阶段,在这两个阶段中可以产生三种孢子:紫菜叶状体成熟后放散的果孢子,它萌发长成紫菜丝状体;紫菜丝状体成熟后可以放散壳孢子,这种孢子萌发长成紫菜叶状体;紫菜叶状体在生长过程中不断形成、放散单孢子,这种单孢子也长成叶状体(曾呈奎、张德瑞,1954)。 在条斑紫菜栽培中,一般应用紫菜丝状体所放散的壳孢子为苗源,所以对壳孢子苗的生理生态特性已有较深入的了解(中国科学院海洋研究所,1978)。但有关单孢子的生理生态,则未见较系统的报道。 在条斑紫菜的试验和栽培中,早已观察到紫菜叶状体在生长过程中放散单孢子,这些单孢子对增加紫菜苗量起到一定的作用。60年代王素娟等曾利用紫菜这一特性在自然苗网上进行过“母子网”附苗试验,之后崔广法等又用人工苗网进行了“母子网”附苗的生产性试验。这种方法可以增加栽培面积和收获量,但不能全部替代壳孢子苗,还需要培养紫菜丝状体。培育紫菜丝状体所需设备多、时间长,并易发病害,管理技术比较复杂。如果充分利用单孢子作为苗源来取代壳孢子苗,就可简化条斑紫菜的生产过程。为此,作者对条斑紫菜单孢子及其幼苗的生长发育进行了室内、外的培养实验,研究它同环境因子的关系,及其在大面积生产中的应用。  相似文献   

15.
为使条斑紫菜(Porphyra yezoensis)上附着的硅藻脱落,从超声波的生物学效应出发提出了新的思路。选择生长状态较好的附着硅藻的紫菜分别在不同的输出功率和时间下用超声波处理。结果表明,当超声波的输出功率为300 W、处理时间25 s时,可以成功地去除附着的硅藻及黏质柄,而对条斑紫菜未产生不良影响。该研究结果在条斑紫菜的加工生产上有应用与推广价值。  相似文献   

16.
条斑紫菜(Porphyra/Pyropia yezoensis)可以产生单孢子,因其能快速直接萌发成叶状体,所以在生产上具有重要的应用价值。本实验主要研究了采样的潮汐周期和地理群体对条斑紫菜叶状体产生单孢子的影响,发现不同采样时间所造成的环境温度变化和潮汐的变化(即节律性的干出)以及不同采样地点所代表的遗传多样性都对单孢子的放散有显著影响。  相似文献   

17.
条斑紫菜杂交重组品系(A-18)的筛选与特性分析   总被引:1,自引:0,他引:1  
江灏  丁洪昌  严兴洪 《海洋学报》2018,40(2):95-103
为筛选出藻体生长快且颜色与野生型色泽相近的条斑紫菜新品系,本研究从条斑紫菜绿色突变体和红色突变体种内杂交产生的后代中,分离出了优良品系A-18。日龄60 d时的叶状体平均长度、长宽比和单株湿质量,A-18品系分别为84.95 cm、49.46和0.52 g,分别是条斑紫菜野生型品系(WT)的3.12、7.01和1.36倍。日龄60 d时叶状体的叶绿素a和总藻胆蛋白含量,A-18品系分别为8.37和53.81 mg/g,均与WT品系较接近。日龄60 d时的叶状体平均厚度,A-18品系仅为20.22 μm,比WT品系降低了29%。另外,A-18品系的壳孢子放散总量为916.01万个/贝壳,是WT品系的1.55倍。综上所述,A-18品系具有生长快、长宽比值大、藻体薄、壳孢子放散量大等优良特性,且藻体颜色与野生型色泽相近,有望在生产中运用。  相似文献   

18.
以坛紫菜(Porphyra haitanensis)为实验材料,采用盐酸水解法和浸提法,以日立L-8900型高速全自动氨基酸分析仪为测定仪器,分别研究了坛紫菜总氨基酸(TAA)和游离氨基酸(FAA)在提取过程中各条件的不同水平对提取结果的影响.实验结果表明:(1)利用正交设计L9(34)对影响TAA提取的4个条件(藻体质量、稀释倍数、干燥温度、空白值)在3个水平上进行优化实验,藻体质量、稀释倍数对测定结果影响显著,干燥温度影响不显著;通过实验筛选出各条件的最佳水平为:藻体质量为0.050 0g,稀释3倍,干燥温度为60℃.(2)利用正交设计L16(45)对影响FAA测定的5个条件(藻体质量、提取液、提取温度、提取时间、空白值)在4个水平上进行优化实验,结果表明藻体质量、提取液、提取温度、提取时间的不同水平对测定结果均有显著影响,其中藻体质量对结果的影响最大;通过实验筛选出各条件的最佳水平为:藻体质量为0.010 0 g,提取液为去离子水,提取温度为60℃,提取时间为4 h.  相似文献   

19.
条斑紫菜高纯度总DNA及其质粒状DNA的提取   总被引:9,自引:2,他引:9  
提取条斑紫菜高纯度总DNA及其质粒状DNA的新方法。先用海螺酶处理紫菜叶状体制备细胞,然后用SDS-蛋白酶K裂解细胞提取总DNA,再用玻璃粉浆(glassmilk)对其纯化,经纯化后的总DNA能被EcoRI,Dral与HaeⅢ等限制酶完全酶切,并在酶切图谱上形成明显的DNA带型。当用异硫氰酸胍一十二烷基肌氨酸钠裂解紫菜细胞时,在总DNA提取物中直接发现有一条质粒状DNA带(2.3Kb),即建立了一种极简便的质粒状DNA提取方法。  相似文献   

20.
光合作用研究中,对于个体发育过程中类囊体膜蛋白结构和功能的变化所知甚少,其中的一个限制因素是能否纯化得到大量高活性的稳定且均一的膜蛋白。作者以条斑紫菜(Porphyra yezoensis)2个不同发育阶段(孢子体和配子体)作为研究对象,分离得到了孢子体和配子体的类囊体膜.在不同的温度、光强和pH下,对其类囊体膜上的光系统活性进行了研究。结果表明,孢子体和配子体的PSⅠ活性均随温度和光强的升高而呈现一个先升高后降低的趋势,在温度18℃,光强为2320lx时具有最高的PSⅠ活性。而孢子体乖配子体的PSll活性随温度和光强的变化趋势不明显,孢子体PSⅡ活性在温度18℃,光强为2320lx时最高,配子体PSⅡ活性在温度13℃,光强为2800lx时最高。孢子体PSⅠ在酸性条件下较活跃,在pH5.4时具有最高的PSⅠ活性,配子体PSⅠ在碱性条件下较活跃,PSⅠ活性在pH10.4时最高;孢子体PSⅡ活性随pH的升高呈现一个先升高后降低的趋势,配子体PSⅡ活性随pH变化趋势不明显,但都在pH8.0处活性最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号