首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young basalt terrains offer an exceptional opportunity to study landscape and hydrologic evolution through time, since the age of the landscape itself can be determined by dating lava flows. These constructional terrains are also highly permeable, allowing one to examine timescales and process of geomorphic evolution as they relate to the partitioning of hydrologic flowpaths between surface and sub‐surface flow. The western slopes of the Cascade Range in Oregon, USA are composed of a thick sequence of lava flows ranging from Holocene to Oligocene in age, and the landscape receives abundant precipitation of between 2000 and 3500 mm per year. On Holocene and late Pleistocene lava landscapes, groundwater systems transmit most of the recharge to large springs (≥0·85 m3 s?1) with very steady hydrographs. In watersheds >1 million years old, springs are absent, and well‐developed drainage networks fed by shallow subsurface stormflow produce flashy hydrographs. Drainage density slowly increases with time in this basalt landscape, requiring a million years to double in density. Progressive hillslope steepening and fluvial incision also occur on this timescale. Springs and groundwater‐fed streams transport little sediment and hence are largely ineffective in incising river valleys, so fluvial landscape dissection appears to occur only after springs are replaced by shallow subsurface stormflow as the dominant streamflow generation mechanism. It is proposed that landscape evolution in basalt terrains is constrained by the time required for permeability to be reduced sufficiently for surface flow to replace groundwater flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
 The postglacial eruption rate for the Mount Adams volcanic field is ∼0.1 km3/k.y., four to seven times smaller than the average rate for the past 520 k.y. Ten vents have been active since the last main deglaciation ∼15 ka. Seven high flank vents (at 2100–2600 m) and the central summit vent of the 3742-m stratocone produced varied andesites, and two peripheral vents (at 2100 and 1200 m) produced mildly alkalic basalt. Eruptive ages of most of these units are bracketed with respect to regional tephra layers from Mount Mazama and Mount St. Helens. The basaltic lavas and scoria cones north and south of Mount Adams and a 13-km-long andesitic lava flow on its east flank are of early postglacial age. The three most extensive andesitic lava-flow complexes were emplaced in the mid-Holocene (7–4 ka). Ages of three smaller Holocene andesite units are less well constrained. A phreatomagmatic ejecta cone and associated andesite lavas that together cap the summit may be of latest Pleistocene age, but a thin layer of mid-Holocene tephra appears to have erupted there as well. An alpine-meadow section on the southeast flank contains 24 locally derived Holocene andesitic ash layers intercalated with several silicic tephras from Mazama and St. Helens. Microprobe analyses of phenocrysts from the ash layers and postglacial lavas suggest a few correlations and refine some age constraints. Approximately 6 ka, a 0.07-km3 debris avalanche from the southwest face of Mount Adams generated a clay-rich debris flow that devastated >30 km2 south of the volcano. A gravitationally metastable 2-to 3-km3 reservoir of hydrothermally altered fragmental andesite remains on the ice-capped summit and, towering 3 km above the surrounding lowlands, represents a greater hazard than an eruptive recurrence in the style of the last 15 k.y. Received: 24 June 1996 / Accepted: 6 December 1996  相似文献   

3.
Optically stimulated luminescence (OSL) dating is increasingly used to estimate the age of fluvial deposits. A significant limitation, however, has been that conventional techniques of sampling and dose rate estimation are suitable only for thick (>60 cm) layers consisting of sand size or finer grains. Application of OSL dating to deposits lacking such layers remains a significant challenge. Alluvial fans along the western front of the Lost River Range in east-central Idaho, USA are one example. Deposits are typically pebble to cobble sheetflood gravels with a sandy matrix but thin to absent sand lenses. As a result, the majority of samples for this project were collected by excavating matrix material from gravelly deposits under light-safe tarps or at night. To examine the contributions of different grain-size fractions to calculated dose-rates, multiple grain-size fractions were analyzed using ICP–MS, high resolution gamma spectrometry and XRF. Dose rates from bulk sediment samples were 0.4–40% (mean of 18%) lower than dose-rate estimates from the sand-size fractions alone, illustrating the importance of representative sampling for dose rate determination. We attribute the difference to the low dose-rate contribution from radio-nuclide poor carbonate pebbles and cobbles that occur disproportionately in clast sizes larger than sand. Where possible, dose rates were based on bulk sediment samples since they integrate the dose-rate contribution from all grain sizes. Equivalent dose distributions showed little evidence for partial bleaching. However, many samples had significant kurtosis and/or overdispersion, possibly due to grain-size related microdosimetry effects, accumulation of pedogenic carbonate or post-depositional sediment mixing. Our OSL age estimates range from 4 to 120 ka, preserve stratigraphic and geomorphic order, and show good agreement with independent ages from tephra correlation and U-series dating of pedogenic carbonate. Furthermore, multiple samples from the same deposit produced ages in good agreement. This study demonstrates that with modified sampling methods and careful consideration of the dose rate, OSL dating can be successfully applied to coarse-grained deposits of climatic and tectonic significance that may be difficult to date by other methods.  相似文献   

4.
A three‐dimensional assessment of the net volume of rock differentially eroded from below mountain tops to form valleys yields a range‐wide constraint on feedback between valley development and the height of mountain peaks. The ‘superelevation’ of mountain peaks potentially attributable to differential removal of material from below peaks in the Olympic Mountains, Washington, was constrained by fitting a smoothed surface to the highest elevation points on a 30 m grid digital elevation model of the range. High elevation areas separate into two primary areas: one centred on Mount Olympus in the core of the range and the other at the eastern end of the range. The largest valleys, and hence areas with the greatest volume of differentially eroded material, surround Mount Olympus. In contrast, the highest mean elevations concentrate in the eastern end of the range. Calculation of the isostatic rebound at Mount Olympus attributable to valley development ranges from 500 to 750 m (21 to 32 per cent of its height) for a 5 to 10 km effective elastic thickness of the crust. Comparison of cross‐range trends in mean and maximum elevation reveals that this calculated rebound for Mount Olympus corresponds well with its ‘superelevation’ above the general cross‐range trend in mean elevation. It therefore appears that the location of the highest peak in the Olympics is controlled by the deep valleys excavated in the centre of the range. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Over 180 springs emerge in the Panamint Range near Death Valley National Park, CA, yet, these springs have received very little hydrogeological attention despite their cultural, historical, and ecological importance. Here, we address the following questions: (1) which rock units support groundwater flow to springs in the Panamint Range, (2) what are the geochemical kinetics of these aquifers, and (3) and what are the residence times of these springs? All springs are at least partly supported by recharge in and flow through dolomitic units, namely, the Noonday Dolomite, Kingston Peak Formation, and Johnnie Formation. Thus, the geochemical composition of springs can largely be explained by dedolomitization: the dissolution of dolomite and gypsum with concurrent precipitation of calcite. However, interactions with hydrothermal deposits have likely influenced the geochemical composition of Thorndike Spring, Uppermost Spring, Hanaupah Canyon springs, and Trail Canyon springs. Faults are important controls on spring emergence. Seventeen of twenty-one sampled springs emerge at faults (13 emerge at low-angle detachment faults). On the eastern side of the Panamint Range, springs emerge where low-angle faults intersect nearly vertical Late Proterozoic, Cambrian, and Ordovician sedimentary units. These geologic units are not present on the western side of the Panamint Range. Instead, springs on the west side emerge where low-angle faults intersect Cenozoic breccias and fanglomerates. Mean residence times of springs range from 33 (±30) to 1,829 (±613) years. A total of 11 springs have relatively short mean residence times less than 500 years, whereas seven springs have mean residence times greater than 1,000 years. We infer that the Panamint Range springs are extremely vulnerable to climate change due to their dependence on local recharge, disconnection from regional groundwater flow (Death Valley Regional Flow System - DVRFS), and relatively short mean residence times as compared with springs that are supported by the DVRFS (e.g., springs in Ash Meadows National Wildlife Refuge). In fact, four springs were not flowing during this campaign, yet they were flowing in the 1990s and 2000s.  相似文献   

6.
Despite its location in the rain shadow of the southern Sierra Nevada, the Panamint Range hosts a complex mountain groundwater system supporting numerous springs which have cultural, historical, and ecological importance. The sources of recharge that support these quintessential desert springs remain poorly quantified since very little hydrogeological research has been completed in the Panamint Range. Here we address the following questions: (i) what is the primary source of recharge that supports springs in the Panamint Range (snowmelt or rainfall), (ii) where is the recharge occurring (mountain-block, mountain-front, or mountain-system) and (iii) how much recharge occurs in the Panamint Range? We answer questions (i) and (ii) using stable isotopes measured in spring waters and precipitation, and question (iii) using a chloride mass-balance approach which is compared to a derivation of the Maxey–Eakin equation. Our dataset of the stable isotopic composition (δ18O and δ2H) of precipitation is short (1.5 years), but analyses on spring water samples indicate that high-elevation snowmelt is the dominant source of recharge for these springs, accounting for 57 (±9) to 79 (±12) percent of recharge. Recharge from rainfall is small but not insignificant. Mountain-block recharge is the dominant recharge mechanism. However, two basin springs emerging along the western mountain-front of the Panamint Range in Panamint Valley appear to be supported by mountain-front and mountain-system recharge, while Tule Spring (a basin spring emerging at the terminus of the bajada on the eastern side of the Panamint Range) appears to be supported by mountain-front recharge. Calculated recharge rates range from 19 mm year−1 (elevations < 1000 mrsl) to 388 mm year−1 (elevations > 1000 mrsl). The average annual recharge is approximately 91 mm year−1 (equivalent to 19.4 percent of total annual precipitation). We infer that the springs in the Panamint Range (and their associated ecosystems) are extremely vulnerable to changes in snow cover associated with climate change. They are heavily dependent on snowmelt recharge from a relatively thin annual snowpack. These findings have important implications for the vulnerability of desert springs worldwide.  相似文献   

7.
河北省阳原六棱山北麓断裂古地震年代学的初步研究   总被引:5,自引:1,他引:5  
六棱山北麓断裂位于阳原盆地南缘,是一条总体走向北东东,倾向北北西的倾滑正断裂。它的断错地貌在河北阳原独山堡发育最好且保存完整在,在狡山堡六棱山北麓断层陡坎前缘开挖了2个探槽,共揭示了2次古地震事件;采集了多个测年样品,经红外释光(IRSL)测年技术测定,初步获得了2次古地震事件发生的可能时代。  相似文献   

8.
Relations between the spatial patterns of soil moisture, soil depth, and transpiration and their influence on the hillslope water balance are not well understood. When determining a water balance for a hillslope, small scale variations in soil depth are often ignored. In this study we found that these variations in soil depth can lead to distinct patterns in transpiration rates across a hillslope. We measured soil moisture content at 0.05 and 0.10 m depth intervals between the soil surface and the soil–bedrock boundary on 64 locations across the trenched hillslope in the Panola Mountain Research Watershed, Georgia, USA. We related these soil moisture data to transpiration rates measured in 14 trees across the hillslope using 28 constant heat sapflow sensors. Results showed a lack of spatial structure in soil moisture across the hillslope and with depth when the hillslope was in either the wet or the dry state. However, during the short transition period between the wet and dry state, soil moisture did become spatially organized with depth and across the hillslope. Variations in soil depth and thus total soil water stored in the soil profile at the end of the wet season caused differences in soil moisture content and transpiration rates between upslope and midslope sections at the end of the summer. In the upslope section, which has shallower soils, transpiration became limited by soil moisture while in the midslope section with deeper soils, transpiration was not limited by soil moisture. These spatial differences in soil depth, total water available at the end of the wet season and soil moisture content during the summer appear responsible for the observed spatial differences in basal area and species distribution between the upslope and midslope sections of the hillslope.  相似文献   

9.
《水文科学杂志》2012,57(2):212-226
ABSTRACT

The estimation of infiltration is a main issue in runoff simulation. The geometry of hillslopes (plan shape and profile curvature) may affect the responses, as well as infiltration over the hillslopes. In this study, the equations of TOPMODEL (a topography-based model) were applied to complex hillslopes to develop the complex TOPMODEL. This model was coupled with the SCS-CN (Soil Conservation Service Curve Number) model to examine the effects of geometry on infiltration and derive a saturation excess-based curve number (CN). The effects of plan shape and profile curvature upon the spatial distribution of CN and infiltration were studied. The results show that convergent hillslopes have 15.4% less infiltration and divergent hillslopes have 7.8% more infiltration than parallel ones. The infiltration over concave hillslopes is 13.5% lower and infiltration over convex hillslopes 5.8% higher than for straight ones. The degree of convergence/divergence has a greater effect on the CN compared to that of profile curvature.  相似文献   

10.
The toxicity of 175 sediment samples from Commencement Bay, Washington, was measured by the survival of marine infaunal amphipods (Rhepoxynius abronius) during ten-day exposure to test sediment. Survival was high in sediment from offshore, deeper parts of the Bay, including two designated dredge material disposal sites. Within each of the major industrialized waterways there was a wide range in amphipod survival. Both acutely toxic and relatively nontoxic samples were collected from various areas within the Hylebos, Blair, Sitcum and City Waterways. Habitat differences, sedimentation rates, proximity to contaminant sources and sinks, and disruption of the seabed by prop scour and dredging could contribute to this variation in toxicity. Community structure data show a correlation between amphipod distribution and sediment toxicity, with lower amphipod density and species richness in the waterways than in the deeper part of the Bay. Phoxocephalid amphipods, a family that includes the bioassay species, were ubiquitous in the deeper Bay, but absent from the waterways. This correlation between laboratory and field results indicates the ecological relevance of the sediment bioassay.  相似文献   

11.
Landslides contribute to dismantle active mountain ranges and faults control the location of landslides. Yet, evidence of the long‐term, regional dependency of landslides on active faults is limited. Previous studies focused on the transient effects of earthquakes on slope stability in compressive and transcurrent regimes. Here we show that in the Peloritani range, NE Sicily, Italy, one of the fastest uplifting areas in the Mediterranean, a clear geographical association exists between large bedrock landslides and active normal faults of the Messina Straits graben. By interpreting aerial photographs, we mapped 1590 landslides and sackungs and 626 fault elements and their facets in a 300 km2 area in the eastern part of the range. We used the new landslide and fault information, in combination with prior geological and seismic information, to investigate the association between bedrock landslides and faults. We find that the distribution and abundance of landslides is related to the presence of large active normal faults, and matches the pattern of the local historical seismicity. Landslide material is more abundant along the East Peloritani Fault System where the long‐term activity of the faults, measured by the average yearly geological moment rate, is larger than in the West Peloritani Fault System where landslides are less abundant. Along the fault systems landslide material concentrates where the cumulated fault throws are largest. We conclude that large landslides and their cumulated volume are sensitive to local rates of tectonic deformation, and discriminate the deformation of the single fault segments that dissect the Peloritani range. Our findings are a direct test of landscape evolution models that predict higher rates of landslide activity near active faults. Our work opens up the possibility of exploiting accurate landslide and fault maps, in combination with geological and seismic information, to characterize the long‐term seismic history of poorly instrumented active regions. © 2015 The Authors Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd  相似文献   

12.
Tufas are widespread in the Napier Range of north Western Australia, an area of tropical seasonal climate and savanna vegetation. The major tufa deposits have been mapped and the different forms described. These include drapes on cliffs, cones at cave entrances or the mouths of ephemeral streams, rimstone pools, and tufa dams. There are at least two generations of tufa cone, with the older being heavily calcreted and eroded. Simple geochemical and petrographical data allow comparison between the different types of deposit here and with deposits from other parts of the world. Thin section observations and scanning electron microscopy enable an initial assessment of the role of organic processes in tufa formation. Obvious organic remains are sparse, although many of the active tufas are composed of filamentous microsparite fabrics, suggesting that algae have influenced the geometry of the deposits. However, the identification of various endolithic algae indicates that they may also be actively involved in the degradation of the deposits.  相似文献   

13.
This paper investigates the specific contributions of river network geomorphology, hillslope flow dynamics and channel routing to the scaling behavior of the hydrologic response as function of drainage area. Scaling relationships emerged from the observations of geomorphological and hydrological data and were reproduced in previous works through mathematical models, for both idealized self-similar networks and natural basins. Recent literature highlighted that scale invariance of hydrological quantities depends not only on the metrics of the drainage catchment but also on effective flow routing. In this study we employ a geomorphological width function scheme to test the simple scaling hypothesis adopting more realistic dynamic conditions than in previous approaches, specifically taking into account the role of hillslopes. The analysis is based on the derivation of the characteristic distributions of path lengths and travel times, inferred from DEM processing and measurements of rainfall and runoff data. The study area is located in the Tiber River region (central Italy).Results indicate that, while scaling properties clearly emerge when the hydrologic response is defined on the basis of the sole geomorphology, scale invariance is broken when less idealized flow dynamics are taken into account. Lack of scaling appears in particular as a consequence of the catchment to catchment variability of hillslope velocities.  相似文献   

14.
Complex rocks, consisting of different lithologic breccias and sediments in the Tungho area of the southern Coastal Range, eastern Taiwan, were formed by magmas and magma–sediment mingling. Based on field occurrences, petrography, and mineral and rock compositions, three components including mafic magma, felsic magma, and sediments can be identified. The black breccias and white breccias were consolidated from mafic and felsic magma, respectively. Isotopic composition shows these two magmas may be from the same source. Compared to the white breccias, the black breccias show clast-supported structures, higher An values in plagioclase, higher contents of MgO, CaO, and Fe2O3 and lower SiO2, greater enrichment in the light rare earth elements (LREE), and depletion in the heavy rare earth elements (HREE). The white breccias show matrix-supported blocks and mingling with tuffaceous sediments to form peperite. Physical and chemical evidence shows that the characteristics of these two components (mafic and felsic magmas) are still apparent in the mingled zone. According to their petrography, mafic and felsic magmas did not have much time for mingling. White intrusive structures and black flow structures show that mingling occurred before they solidified. Finally, the occurrence of mingling between magmas and sediments suggests that the mingling has taken place at the surface and not in the magma chamber.  相似文献   

15.
We investigated the role of different hillslope units with different topographic characteristics on runoff generation processes based on field observations at two types of hillslopes (0·1 ha): a valley‐head (a convergent hillslope) and a side slope (a planar hillslope), as well as at three small catchments having two types of slopes with different drainage areas ranging from 1·9 to 49·7 ha in the Tanakami Mountains, central Japan. We found that the contribution of the hillslope unit type to small catchment runoff varied with the magnitude of rainfall. When the total amount of rainfall for a single storm event was < 35 mm, runoff in the small catchment was predominantly generated from the side slope. As the amount of rainfall increased (>35 mm), the valley‐head also began to contribute to the catchment runoff, adding to runoff from the side slope. Although the direct runoff from the valley‐head was greater than that from the side slope, the contribution from the side slope was quantitatively greater than that from the valley‐head due to the proportionally larger area occupied by the side slope in the small catchment. The storm runoff responses of the small catchments reflected the change in the runoff components of each hillslope unit as the amount of rainfall increased and rainfall patterns changed. However, similar runoff responses were found for the small catchments with different areas. The similarity of the runoff responses is attributable to overlay effects of different hillslope units and the similar composition ratios of the valley‐head and side slope in the catchments. This study suggests that the relative roles of the valley‐head and side slope are important in runoff generation and solute transport as the catchment size increases from a hillslope/headwater to a small catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Erosion rates are key to quantifying the timescales over which different topographic and geomorphic domains develop in mountain landscapes. Geomorphic and terrestrial cosmogenic nuclide (TCN) methods were used to determine erosion rates of the arid, tectonically quiescent Ladakh Range, northern India. Five different geomorphic domains are identified and erosion rates are determined for three of the domains using TCN 10Be concentrations. Along the range divide between 5600 and 5700 m above sea level (asl), bedrock tors in the periglacial domain are eroding at 5.0 ± 0.5 to 13.1 ± 1.2 meters per million years (m/m.y.)., principally by frost shattering. At lower elevation in the unglaciated domain, erosion rates for tributary catchments vary between 0.8 ± 0.1 and 2.0 ± 0.3 m/m.y. Bedrock along interfluvial ridge crests between 3900 and 5100 m asl that separate these tributary catchments yield erosion rates <0.7 ± 0.1 m/m.y. and the dominant form of bedrock erosion is chemical weathering and grusification. Erosion rates are fastest where glaciers conditioned hillslopes above 5100 m asl by over‐steepening slopes and glacial debris is being evacuated by the fluvial network. For range divide tors, the long‐term duration of the erosion rate is considered to be 40–120 ky. By evaluating measured 10Be concentrations in tors along a model 10Be production curve, an average of ~24 cm is lost instantaneously every ~40 ky. Small (<4 km2) unglaciated tributary catchments and their interfluve bedrock have received very little precipitation since ~300 ka and the long‐term duration of their erosion rates is 300–750 ky and >850 ky, respectively. These results highlight the persistence of very slow erosion in different geomorphic domains across the southwestern slope of the Ladakh Range, which on the scale of the orogen records spatial changes in the locus of deformation and the development of an orogenic rain shadow north of the Greater Himalaya. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The Southern Alps mountain chain, New Zealand, has formed as a consequence of late Cenozoic collision of the continental parts of the Pacific and Australia plates. Fission track analysis has yielded estimates of the amount, age of initiation, and rate of late Cenozoic rock uplift for 82 surface samples taken from transects across the Southern Alps. The mean surface, summit and valley elevations in the vicinity of each of the rock sample sites have also been measured. Regression of the geomorphic variables on the uplift variables has been used to establish quantitative relationships between uplift and geomorphology. There are strong and consistent linear associations between uplift and the elevations of the mean surface, summits and valleys. The preferred regression models have uniform slope but varying elevation response between transects. Substitution of space for time has allowed the evolution of landforms to be studied. To the east of the Main Divide, elevation and relief are proportional to, and closely related to, the age of initiation of rock uplift (‘uplift age’) and the amount of rock uplift (r2 > 0·8). Mean surface uplift was delayed for ~2 Ma after the start of rock uplift, a result of the stripping of a soft cover rock succession that, prior to rock uplift, overlaid the harder greywacke basement. Inter-transect variations in regression response and x-intercept are inferred, therefore, to reflect the variable preuplift thickness of cover rocks. However, the regular regression slope for the transects reflects the consistent nature of the interaction between uplift and the erodibility of greywacke basement. Uplift of the mean surface proceeded at 0·4 km/km and 0·4 km/Ma of rock uplift, while the rock uplift rate was 0·8 km/Ma. Summit elevations have increased at a rate of 0·6 km/Ma and valley elevations have increased at 0·2 km/Ma. Regression lines relating mean surface, summit and valley elevations to rock uplift and uplift age diverge from common intercepts; it is concluded, therefore, that the mountains east of the Main Divide have continued to increase in elevation and relief and change in form over time since the start of mean surface uplift. Mountain elevation has little relationship with late Cenozoic mean rock uplift rates of 0·8–1·0 km/Ma or inferred contemporary rock uplift rates (r2 ~ 0·3). In contrast, to the west of the Main Divide, elevation is shown to be closely related to rock uplift rate (r2 > 0·3). In contrast, to the west of the Main Divide, elevation is shown to be closely related to rock uplift rate (r2 > 0·8). Transects with higher rock uplift rates support higher topography. Landforms are therefore in a stable equilibrium with rock uplift rate, and the landscape contains no residual evidence of the total amount of rock uplift, or the age of uplift. Lithological variation appears to have no relationship with elevation.  相似文献   

18.
TOPEX/Poseidon satellite altimetry data from 1993 to 1999 were used to study mean annual variation of sea surface height anomaly (SSHA) in the South China Sea (SCS) and to reproduce its climatological monthly surface dynamic topography in conjunction with historical hydrographic data. The characters and rules of seasonal evolution of the SCS dynamic topography and its upper circulation were then discussed. Analyses indicate that annual variation of the SCS large-scale circulation could be divided into four major phases. In winter (from November to February), the SCS circulation is mainly controlled by double cyclonic gyres with domination of the northern gyre. Other corresponding features include the Kuroshio intrusion from the Luzon Strait and the northeastward off-shelf current in the area northwest off Kalimantan Island. The double gyre structure disassembled in spring (from March to April) when the northern gyre remains cyclonic, the southern gyre becomes anticyclonic, and the general circulation pattern shows a dipole. There is no obvious large-scale closed gyre inside the SCS basin in both summer (from May to July) and autumn (from August to October) when the SCS Monsoon Jet dominates the circulation, which flows northeastward across the SCS. Even so, circulation patterns of these two phases diverse significantly. From May to July, the SCS monsoon jet flows northward near the Vietnam coast and bends eastward along the topography southeast off Hainan Island at about 18°N forming an anticyclonic turn. It then turns northeastward after crossing the SCS. From August to October, however, the monsoon Jet leaves the coast of Vietnam and enters interior of the basin at about 13°N, and the general circulation pattern becomes cyclonic. The Kuroshio intrusion was not obvious in spring, summer and autumn. It is suggested from these observations that dynamic adjustment of the SCS circulation starts right after the peak period of the prevailing monsoon.  相似文献   

19.
The tufa deposits developed in the Mijares River canyon at the eastern sector of the Iberian Range were studied by using geomorphological, stratigraphic, micromorphological, mineralogical and chronological (U/Th and 14C) techniques. These tufas are located along a high‐gradient river profile reach, with high water turbulence and mechanical outgassing, related to Quaternary faulting activity upstream in the regional context of an extensional tectonic regime. Two stepped and terraced fluviatile tufa structures with large phytohermal barrage frameworks and smaller dammed areas have been differentiated. The first structure, Upper Pleistocene in age (from 200 000 to 50 000 years BP ), is made up by two morphosedimentary units reaching 120 m in thickness, and the second one, Holocene in age (10 000–5000 years BP ), is 35 m in thickness. These structures record a more or less continuous tufa development with a mean deposition rate ranging between 1 and 5 mm a−1 as minimum. A preferential growth with high biological activity during warm and wet palaeoenvironmental stages (isotopic stages 7, 3 and 1) can be deduced. Thus, neotectonic activity controlled the location along the Mijares River as well as the large thickness of the tufa deposits, whereas warm climatic periods favoured intense tufa activity in the fluvial system. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
The High Park Fire burned ~35 300 ha of the Colorado Front Range during June and July 2012. In the areas of most severe burn, all trees were killed and the litter and duff layers of soil were completely removed. Post‐fire erosion caused channel heads to develop well upslope from pre‐fire locations. The locations of 50 channel heads in two burned catchments were documented and the range of drainage areas contributing to these channel heads to drainage areas of unburned channel heads in the region measured previously were compared. Mean drainage area above channel heads in the burned zone decreased by more than two‐orders of magnitude relative to unburned sites. Drainage area above channel heads between the two burned catchments does not differ significantly with respect to slope, likely as a result of differences in surface roughness between the two sites following the fire. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号