首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of a peptide hormone to affect many different intracellular targets is thought to be possible because of the modular organization of signal transducing molecules in the cell. Evidence for the presence of signaling modules in metazoan cells, however, is incomplete. Herein we show, with morphology and cell fractionation, that all the components of a mitogen-activated protein kinase pathway are concentrated in caveolae of unstimulated human fibroblasts. Addition of platelet-derived growth factor to either the intact cell or caveolae isolated from these cells stimulates tyrosine phosphorylation and activates mitogen-activated protein kinases in caveolae. The molecular machinery for kinase activation, therefore, is preorganized at the cell surface of quiescent cells.  相似文献   

2.
Proliferation of airway smooth muscle results from persistent inflammatory cytokine and growth factor stimulation and is a critical component of airway luminal narrowing in chronic asthma. Using primary cultures of bovine tracheal smooth muscle (BTSM) cells to examine the signaling basis of cell proliferation, platelet-derived growth factor (PDGF)-BB and thrombin (which act through distinct receptor types) were found to induce DNA synthesis in BTSM cells. Mitogen-induced DNA synthesis could be completely inhibited by LY294002, a selective phosphoinositide 3-kinase (PtdIns 3-kinase) inhibitor. Exposure of BTSM cells to PDGF-BB or thrombin resulted in rapid activation of PtdIns 3-kinase and accumulation of phosphoinositide-3,4,5-trisphosphate. Protein kinase B, a novel signaling protein kinase, was identified in BTSM cells and was activated by PDGF-BB and thrombin in a PtdIns 3-kinase-dependent manner; this may underlie mitogen-stimulated activation of p70(s6k). PD98059, a mitogen-activated protein kinase kinase 1 inhibitor, also partially inhibited PDGF-BB- and thrombin-stimulated DNA synthesis, indicating a modulatory role for mitogen-activated protein kinase in proliferation. GF109203X, Ro 31-8220, calphostin C, and chelerythrine (selective protein kinase C inhibitors) had no effect on PDGF-BB- or thrombin-stimulated DNA synthesis, suggesting that, despite abolishment of mitogen-stimulated protein kinase C activity, cell proliferation stimulated by PDGF-BB and thrombin is protein kinase C-independent. These data demonstrate that the PtdIns 3-kinase/protein kinase B pathway represents a key signaling route in airway smooth muscle proliferation, with the mitogen-activated protein kinase kinase 1/mitogen-activated protein kinase cascade providing a complementary signal required for the full mitogenic response.  相似文献   

3.
Contraction of smooth muscle cells is generally assumed to require Ca2+/calmodulin-dependent phosphorylation of the 20-kDa myosin light chains. However, we report here that in the absence of extracellular calcium, phenylephrine induces a contraction of freshly isolated ferret aorta cells in the absence of increases in intracellular ionized calcium or light chain phosphorylation levels but in the presence of activation of mitogen-activated protein kinase. A protein at 36 kDa co-immunoprecipitated with the mitogen-activated protein kinase and was identified as the actin-binding protein, calponin, by immunoblot. An overlay assay further confirmed an interaction between the kinase and calponin, even though the kinase did not phosphorylate calponin in vitro. Calponin also co-immunoprecipitated from smooth muscle cells with protein kinase C-epsilon. High resolution digital confocal studies indicated that calponin redistributes to the cell membrane during phenylephrine stimulation at a time when mitogen-activated protein kinase and protein kinase C-epsilon are targeted to the plasmalemma. These results suggest a role for calponin as a signaling molecule, possibly an adapter protein, linking the targeting of mitogen-activated protein kinase and protein kinase C-epsilon to the surface membrane.  相似文献   

4.
Mitogen-activated protein (MAP) kinase cascades are major signaling systems by which cells transduce extracellular cues into intracellular responses. In general, MAP kinases are activated by phosphorylation on tyrosine and threonine residues and inactivated by dephosphorylation. Therefore, MAP kinase phosphatase-1 (MKP-1), a dual-specificity protein tyrosine phosphatase that exhibits catalytic activity toward both regulatory sites on MAP kinases, is suggested to be responsible for the downregulation of extracellular signal-regulated kinase (ERK), stress-activated protein kinase (SAPK), and p38 MAP kinase. In the present study, we examined the role of these MAP kinases in the induction of MKP-1 in vascular smooth muscle cells (VSMCs). Extracellular stimuli such as platelet-derived growth factor (PDGF), 12-O-tetradecanoylphorbol 13-acetate (TPA), and angiotensin II, which activated ERK but not SAPK/p38 MAP kinase, induced a transient induction of MKP-1 mRNA and its intracellular protein. In addition, PD 098059, an antagonist of MEK (MAP kinase/ERK kinase), the upstream kinase of ERK, significantly reduced the PDGF-induced activation of ERK and potently inhibited the expression of MKP-1 after stimulation with PDGF, thereby demonstrating the induction of MKP-1 in response to activation of the ERK signaling cascade. Furthermore, anisomycin, a potent stimulus of SAPK and p38 MAP kinase, also induced MKP-1 mRNA expression. This effect of anisomycin was significantly inhibited in the presence of the p38 MAP kinase antagonist SB 203580. These data suggest the induction of MKP-1, not only after stimulation of the cell growth promoting ERK pathway but also in response to activation of stress-responsive MAP kinase signaling cascades. We suggest that this pattern of MKP-1 induction may be a negative feedback mechanism in the control of MAP kinase activity in VSMCs.  相似文献   

5.
Ras and Rac are membrane-associated GTPases that function as molecular switches activating intracellular mitogen-activated protein kinase (MAPK) cascades and other effector pathways in response to extracellular signals [1]. Activation of Ras and Rac into their GTP-bound conformations is directly controlled by specific guanine-nucleotide exchange factors (GEFs), which catalyze GDP release. Several Ras-specific GEFs that are related to the budding yeast protein Cdc25p have been described, whereas GEFs for Rac-related GTPases contain a region that is homologous to the oncoprotein DbI [2-3]. The Ras-GRF1 and Ras-GRF2 proteins, which couple Ras activation to serpentine receptors and calcium signals, contain both Cdc25 and DbI homology (DH) regions [3-4]. Here, we demonstrate that Ras-GRF2 is a bifunctional signaling protein that is able to bind and activate Ras and Rac, and thereby coordinate the activation of the extracellular-signal-regulated kinase (ERK) and stress-activated protein kinase (SAPK) pathways.  相似文献   

6.
OBJECTIVE: To study the effects of estradiol and progesterone on the proliferation of normal human breast epithelial cells in vivo. DESIGN: Double-blind randomized study. SETTING: Departments of gynecology and of cell biology at a university hospital. PATIENT(S): Forty postmenopausal women with untreated menopause and documented plasma FSH levels of >30 mIU/mL and estradiol levels of <20 pg/mL. INTERVENTION(S): Daily topical application to both breasts of a gel containing a placebo, estradiol, progesterone, or a combination of estradiol and progesterone during the 14 days preceding esthetic breast surgery or excision of a benign lesion. MAIN OUTCOME MEASURE(S): Plasma and breast tissue concentrations of estradiol and progesterone. Epithelial cell cycles were evaluated in normal breast tissue by counting mitoses and performing quantitative proliferating cell nuclear antigen immunolabeling analyses. RESULT(S): Increasing the estradiol concentration enhanced the number of cycling epithelial cells, whereas increasing the progesterone concentration significantly limited the number of cycling epithelial cells. CONCLUSION(S): Exposure to progesterone for 14 days reduced the estradiol-induced proliferation of normal breast epithelial cells in vivo.  相似文献   

7.
BACKGROUND & AIMS: Recently, we postulated a new concept of duodenal ulcer pathogenesis suggesting that antral Helicobacter pylori infection blocks inhibitory pathways to the gastrin and parietal cells, resulting in an increased and prolonged postprandial acid secretion. the aim of this study was to examine duodenal acid load and duodenal bulb pH after a meal before and after eradication of H. pylori. METHODS: Using a marker-dilution method and a pH electrode in the duodenal bulb, gastric emptying, acid secretion, gastrin release, duodenal acid load, and duodenal bulb pH were studied during 2 hours after peptone meals of pH 7.0 and 2.0 in 8 H. pylori-negative controls and 8 H. pylori-infected subjects before and 6 months after eradication. RESULTS: The H. pylori-infected subjects had an increased gastric emptying, gastrin release, and acid secretion, higher duodenal acid load, and lower duodenal bulb pH after the meals. These responses were normalized after eradication. CONCLUSIONS: H. pylori-infected subjects have an increased and prolonged postprandial acid secretion, partly caused by an impaired low pH inhibition of acid secretion, gastrin release, and gastric emptying, resulting in an increased duodenal acid load and a prolongation of low pH in the duodenal bulb, as a general prerequisite for the development of duodenal ulcer disease.  相似文献   

8.
Two patients with plasma cell leukemia (PCL) with a t(11;14)(q13;q32) translocation are reported. Case 1 is a 64-year-old woman diagnosed as having primary PCL (IgA/lambda, Stage III) with high serum LDH and beta 2-microglobulin (beta 2MG) levels. She was treated with combination chemotherapy but died of gastrointestinal bleeding on the 45th hospital day. Case 2 is a 52-year-old man, initially diagnosed with multiple myeloma (IgG/kappa, Stage III) in August 1993. Relapse several months after primary chemotherapy was characterized by a rapid increase in plasma cells in peripheral blood, high serum LDH and beta 2MG levels, and resistance to further chemotherapy. Both cases showed complex karyotypic abnormalities including t(11;14), and Northern analysis revealed overexpression of the PRAD1/ cyclin D1 gene. The PRAD1 gene is found on chromosome band 11q13 and encodes cyclin D1. Cyclin D1 plays an important role in control of the cell cycle, and overexpression of PRAD1/cyclin D1 may be involved in disease progression in these cases.  相似文献   

9.
The effect of the three platelet-derived growth factor (PDGF) isoforms AA, AB, and BB on migration was investigated in cultured human saphenous vein smooth muscle cells. The modified Boyden chamber technique yielded efficacies BB > AB, AA = 0. However, the BB concentration-response relationship displayed a pronounced peak, occurring between 1 and 10 ng/mL, with no response above this range. Checkerboard analysis showed that the promotion of migration at low concentrations was chemotactic in nature but that the downturn was independent of gradient. Furthermore, at high concentrations BB was able to prevent chemotaxis induced by fetal calf serum and epidermal growth factor (EGF). Experiments using low concentrations of BB in combination with high concentrations of AA to saturate PDGF alpha-receptors in the presence and absence of a neutralizing antibody to alpha-receptors revealed that alpha-receptor activation induced partial inhibition of chemotaxis but this did not account for the inhibition of migration by high concentrations of BB. Despite possessing no significant chemotactic action itself, high concentrations of the AB isoform completely inhibited BB induced chemotaxis. Taken together these results suggest that the chemotactic signal induced by PDGF is dominated by PDGF beta-receptors and switches from positive at low concentrations to negative at higher concentrations. Stimulation of DNA synthesis by the three isoforms (as measured by [3H] thymidine incorporation) yielded saturable responses for the AB and BB isoforms, with similar efficacy and weak or no response for the AA isoform. Concentration-dependent patterns of tyrosine phosphorylation of certain proteins mirrored the form of the chemotactic response and suggest one possible underlying regulatory mechanism to account for the disparity between PDGF-induced chemotaxis and DNA synthesis.  相似文献   

10.
The mitogenic action of growth factors involves the stimulation of intracellular protein kinases. In this report we have characterized the major protein kinase released from Balb/c 3T3 and normal rat kidney plasma membranes by the action of platelet-derived growth factor (PDGF). PDGF appears to stimulate the release of approximately 10 proteins, at least one of which is a kinase capable of phosphorylating proteins on Ser or Thr (as determined by the lability of the phosphate to alkali treatment). More than 90% of the Ser/Thr kinase activity was inhibited by PKI5-22, a specific peptide inhibitor of the cAMP-dependent protein kinase (PKA). We used immunoblotting to confirm that the kinase released in response to PDGF was PKA. cAMP also stimulated the release of PKA, and the set of protein substrates phosphorylated was similar following PDGF or cAMP stimulation. Interestingly, in the presence of a cAMP analogue ((Rp)-cAMPS), cAMP could not induce dissociation of PKA from the membranes, whereas stimulation by PDGF increased the level of PKA activation. Furthermore, unlike Swiss 3T3 cells, neither Balb/c 3T3 fibroblasts nor normal rat kidney cells accumulate cAMP in response to PDGF, yet the level of PKA in the cytosol of these intact cells increases in response to PDGF. Thus, it appears as though PDGF activation of the membrane-associated form of the PKA holoenzyme occurs by a mechanism independent of an elevation in cAMP levels.  相似文献   

11.
The mitogen-activated protein kinase cascade of the Saccharomyces cerevisiae pheromone response pathway is organized on the Ste5 protein, which binds each of the kinases of the cascade prior to signaling. In this study, a structure-function analysis of Ste5 deletion mutants uncovered new functional domains of the Ste5 protein and revealed that Ste5 dimerizes during the course of normal signal transduction. Dimerization, mediated by two regions in the N-terminal half of Ste5, was first suggested by intragenic complementation between pairs of nonfunctional Ste5 mutants and was confirmed by using the two-hybrid system. Coimmunoprecipitation of differently tagged forms of Ste5 from cells in which the pathway has been activated by Ste5 overexpression further confirmed dimerization. A precise correlation between the biological activity of various Ste5 fragments and dimerization suggests that dimerization is essential for Ste5 function.  相似文献   

12.
13.
Phospholipid/calcium-dependent protein kinase (protein kinase C [PKC]) is a critical system in signal transduction of many different cells including airway smooth muscle (ASM) cells. We have previously shown that after administration of different phorbol esters, specific activators of PKC, characteristic electrical and contractile changes of ASM cells can be demonstrated. Similarly, our data showed that stimulation of PKC is implicated in the process of sensitization and the specific antigen challenge response of ASM cells. In this study we examined the effect of staurosporine, a microbial alkaloid, which has been reported to be a specific inhibitor of PKC, on sensitization- and specific antigen challenge-induced electrical and contractile changes of ASM cells. The effect of staurosporine was compared with those of amiloride, furosemide, and compounds NA-0345 and H-7, both synthetic PKC inhibitors. We used ASM preparations isolated from adult male guinea pigs (Camm-Hartley strain). Changes in both membrane potential (Em), measured by a glass microelectrode technique, and isometric force, measured by copper-beryllium strain gauge, were continuously monitored. Experiments were conducted with optimal length (Lmax) of ASM preparations and at 37 degrees C. We found that the exposure of ASM preparations to staurosporine, NA-0345, H-7, amiloride, and furosemide (all in 10(-12) to 10(-4) M) had no measurable effect on the resting membrane potential or isometric force of ASM preparations. In contrast, pretreatment of ASM preparations with staurosporine, NA-0345, H-7, amiloride, or furosemide significantly attenuated (p < 0.001) phorbol myristate acetate-induced changes of ASM preparations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Mst1 is a ubiquitously expressed serine-threonine kinase, homologous to the budding yeast Ste20, whose physiological regulation and cellular function are unknown. In this paper we show that Mst1 is specifically cleaved by a caspase 3-like activity during apoptosis induced by either cross-linking CD95/Fas or by staurosporine treatment. CD95/Fas-induced cleavage of Mst1 was blocked by the cysteine protease inhibitor ZVAD-fmk, the more selective caspase inhibitor DEVD-CHO and by the viral serpin CrmA. Caspase-mediated cleavage of Mst1 removes the C-terminal regulatory domain and correlates with an increase in Mst1 activity in vivo, consistent with caspase-mediated cleavage activating Mst1. Overexpression of either wild-type Mst1 or a truncated mutant induces morphological changes characteristic of apoptosis. Furthermore, exogenously expressed Mst1 is cleaved, indicating that Mst1 can activate caspases that result in its cleavage. Kinase-dead Mst1 did not induce morphological alterations and was not cleaved upon overexpression, indicating that Mst1 must be catalytically active in order to mediate these effects. Mst1 activates MKK6, p38 MAPK, MKK7 and SAPK in co-transfection assays, suggesting that Mst1 may activate these pathways. Our findings suggest the existence of a positive feedback loop involving Mst1, and possibly the SAPK and p38 MAPK pathways, which serves to amplify the apoptotic response.  相似文献   

15.
Activation of the classical mitogen-activated protein kinase (MAPK) pathway leads to proliferation of many cell types. Accordingly, an inhibitor of MAPK kinase, PD 098059, inhibits PDGF-induced proliferation of human arterial smooth muscle cells (SMCs) that do not secrete growth-inhibitory PGs such as PGE2. In striking contrast, in SMCs that express the inducible form of cyclooxygenase (COX-2), activation of MAPK serves as a negative regulator of proliferation. In these cells, PDGF-induced MAPK activation leads to cytosolic phospholipase A2 activation, PGE2 release, and subsequent activation of the cAMP-dependent protein kinase (PKA), which acts as a strong inhibitor of SMC proliferation. Inhibition of either MAPK kinase signaling or of COX-2 in these cells releases them from the influence of the growth-inhibitory PGs and results in the subsequent cell cycle traverse and proliferation. Thus, the MAPK pathway mediates either proliferation or growth inhibition in human arterial SMCs depending on the availability of specific downstream enzyme targets.  相似文献   

16.
17.
C3H10T1/2 fibroblasts transformed by the minimal expression of oncogenic Ha-Ras (V12H10 cells) or N-Ras (K61N10 cells) have constitutive mitogen-activated protein kinase (MAPK) activity and proliferate in serum-free medium. The constitutive MAPK activity and serum-independent proliferation of V12H10 cells are sensitive to the growth factor antagonist, suramin (Hamilton, M., and Wolfman, A. (1998) Oncogene 16, 1417-1428), suggesting that Ha-Ras-mediated regulation of the MAPK cascade is dependent upon the action of an autocrine factor. Serum-free medium conditioned by V12H10 cells contains an activity that stimulates MAPK activity in quiescent fibroblasts. This MAPK stimulatory activity could be specifically blocked by the epidermal growth factor receptor (EGFR) inhibitors, PD153035 and PD158780. These inhibitors also blocked the serum-independent proliferation of V12H10 cells. Immunodepletion of conditioned medium with antibodies to transforming growth factor alpha and EGF significantly inhibited its ability to stimulate MAPK activity. Stable transfection of EGFR-negative NR6 and EGFR-positive Swiss3T3 cells with oncogenic (G12V)Ha-Ras demonstrated that only the Ha-Ras-transfected Swiss 3T3 cells possessed constitutive MAPK activity, and this activity was sensitive to PD153035. These data suggest that autocrine activation of the EGFR is required for the regulation of the MAPK cascade in cells minimally expressing oncogenic Ha-Ras.  相似文献   

18.
Leukotriene D4 (LTD4) is a major lipid mediator involved in inflammatory and allergic disorders including bronchial asthma. Despite its potent biological activity, little is known about the receptor and intracellular signaling pathways. Here we analyzed the signal transduction mechanisms through LTD4 receptors using human monocytic leukemia THP-1 cells. When these cells were stimulated with LTD4, intracellular calcium concentration was increased and mitogen-activated protein kinase (MAP kinase) was activated severalfold. This activation was inhibited by staurosporine or GF109203X treatment or abolished by protein kinase C depletion. Cytosolic protein kinase Calpha was translocated to the membrane, and Raf-1 was activated by LTD4 treatment in a similar time course. LTD4-induced Raf-1 activation was diminished by protein kinase C depletion in the cells. A chemotactic response of THP-1 cells toward LTD4 was observed which was inhibited by pertussis toxin (PTX) pretreatment. Thus, LTD4 has at least two distinct signaling pathways in THP-1 cells, a PTX-insensitive mitogen-activated protein kinase activation through protein kinase Calpha and Raf-1 and a PTX-sensitive chemotactic response. This cellular signaling can explain in part the versatile activities of LTD4 in macrophages under inflammatory and allergic conditions.  相似文献   

19.
JE is a member of the family of "immediate early" genes induced by growth factors and cytokines. JE encodes a low molecular weight secretory glycoprotein analogous to the human monocyte chemoattractant protein, MCP-1. JE and MCP-1 proteins are thought to play an important role in inflammation and in the recruitment of monocyte/macrophages to the vessel wall during the development of atherosclerosis. We have previously reported that the induction of JE in rat aortic smooth muscle cells (SMC) was specific to platelet-derived growth factor (PDGF) and was not seen with other growth agonists. Using a luciferase reporter system and transient transfection assays of rat aortic SMC, we now report the identification of a region in the proximal rat JE promoter that is responsive to PDGF but not to other growth factors (angiotensin II and alpha-thrombin) or cytokines (interleukin 1-beta and tumor necrosis factor-alpha). The full response to PDGF (approximately 6-fold) requires the cooperative activity of two potentially novel cis-acting elements, at positions -146 to -128 and -84 to -59. While each element produces a different pattern in electrophoretic mobility shift assays, they appear to bind the same PDGF-responsive species. Further analysis of these regions should provide important insights into PDGF-specific responses in vascular SMC.  相似文献   

20.
Physical exercise can cause marked alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling molecules and pathways that enable exercise to modulate cellular processes in skeletal muscle. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular responses. We tested the hypothesis that a single bout of exercise activates the MAPK signaling pathway. Needle biopsies of vastus lateralis muscle were taken from nine subjects at rest and after 60 min of cycle ergometer exercise. In all subjects, exercise increased MAPK phosphorylation, and the activity of its downstream substrate, the p90 ribosomal S6 kinase 2. Furthermore, exercise increased the activities of the upstream regulators of MAPK, MAP kinase kinase, and Raf-1. When two additional subjects were studied using a one-legged exercise protocol, MAPK phosphorylation and p90 ribosomal S6 kinase 2, MAP kinase kinase 1, and Raf-1 activities were increased only in the exercising leg. These studies demonstrate that exercise activates the MAPK cascade in human skeletal muscle and that this stimulation is primarily a local, tissue-specific phenomenon, rather than a systemic response to exercise. These findings suggest that the MAPK pathway may modulate cellular processes that occur in skeletal muscle in response to exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号