首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
黄艳茹  陈明明 《中国物理 B》2014,23(1):13101-013101
Electron momentum spectroscopy(EMS) has been used for the first time to study core electronic structure of isoC2H2Cl2. In the present work, the pronounced difference between ionization energies of two C1 score orbitals(2A1 and 3A1) is seen as a chemical shift of 3 eV, which is due to different chemical environments of the related carbon atoms. Both the calculated spherically averaged core electron momentum distributions(MDs) and three-dimensional electron momentum density maps show that these core molecular orbitals(MOs) 2A1and 3A1 exhibit strong atomic orbital characteristics in real and momentum space. However, the core states 2B2 and 4A1, which are almost degenerate and related to two equivalent atoms, exhibit notable differences between the momentum and position depictions. In contrast to the position space, the momentum density maps of these two core MOs highlight the interference effects which are due to the nuclear positions. The 2B2 orbital of iso-C2H2Cl2 is the antisymmetric counterpart of the 4A1 core orbital in real space. However, it relates to the 4A1 orbital by an exchange of maxima and minima in momentum space. Due to interference effects between electrons scattered from different atomic centers, modulations with a periodicity of 1.12 a.u. can be seen in the computed momentum densities, which tend to decay with increasing electron momenta. Accordingly, the EMS can not only effectively image the electronic structure of compounds by studying valence orbitals, but also provides direct information on the nature of the nuclear geometry by investigating the core states.  相似文献   

2.
王立民  罗莹  马本堃 《中国物理》2002,11(2):150-155
The electronic energy spectrum and wavefunction of a quantum-dot molecule are studied by means of the finite-element solution of the single electron Schr?dinger equation. We find that the nature of the coupling can be covalent, ionic, or "intermediate" new mixed states, depending on various parameters such as the separation distance between two dots, the height of potential barrier, matching of the energies and parities of the orbital localized on each dot. The bond property can be used to explain the experimental result obtained by Oosterkamp et al. (1998 Nature 395 873).  相似文献   

3.
袁建民 《中国物理快报》2002,19(10):1459-1462
An average-atom model is propsed to calculate the opacities of hot and dense plasmas of a mixture.A selfconsistent scheme is used to reach the requirements of the same temperature and chemical potential for all kinds of atoms in the mixtures,the same electron density at the boundaries between the atoms,and the electrical neutrality within each atomic sphere.The orbital energies and wavefunctions for the bound electrons are calculated with the Dirac-Slater equations.The occupation numbers at each orbital of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms.As an example,the opacity of the mixture of Au and Cd is calculated at a few temperatures and densities.  相似文献   

4.
The conductance stabilities of carbon atomic chains(CACs) with different lengths are investigated by performing theoretical calculations using the nonequilibrium Green's function method combined with density functional theory.Regular even–odd conductance oscillation is observed as a function of the wire length.This oscillation is influenced delicately by changes in the end carbon or sulfur atoms as well as variations in coupling strength between the chain and leads.The lowest unoccupied molecular orbital in odd-numbered chains is the main transmission channel,whereas the conductance remains relatively small for even-numbered chains and a significant drift in the highest occupied molecular orbital resonance toward higher energies is observed as the number of carbon atoms increases.The amplitude of the conductance oscillation is predicted to be relatively stable based on a thiol joint between the chain and leads.Results show that the current–voltage evolution of CACs can be affected by the chain length.The differential and second derivatives of the conductance are also provided.  相似文献   

5.
In this paper the ab initio study using pseudopotential plane wave method with the local spin density functional approximation is presented for the molecular conductor (BEDSe-TTF)2[Fe(CN)5NO]. The mean electronic density distributions are obtained, and we find that the extended π orbital of the selenium does not affect the properties of material as assumed in other papers and the “side-by-side“ type S...S interaction is the primary interaction between donors. From band structure calculations we analyze the influence of the NO groups on the electronic structure and magnetic properties of molecule. It is shown that the itinerant electrons important to electronic properties in these types of hybrids are delocalized electrons contributed by NO groups, instead of by the 3d electrons of Fe. Additionally, we have found that the localized magnetic moment is also contributed by the NO groups in this molecular conductor. From total energy calculations the molecular structure with the lowest energy is found due to the interaction between split spins, and the particular positions of the NO groups are obtained.  相似文献   

6.
The structure and magnetic properties of Osn (n=11~22) clusters are systematically studied by using density functional theory (DFT). For each size, the average binding energy per atom, the second-order differences of total energies and the highest occupied molecular orbital (HOMO)–the lowest unoccupied molecular orbital (LUMO) gaps are calculated to analyze the stability of the cluster. The structures of Os14 and Os18 clusters are based on a close-packed hexagonal structure, and they have maximum stabilities, so n=14, 18 are the magic numbers. The 5d electrons play a dominant role in the chemical reaction of Osn clusters. The magnetic moments of Osn clusters are quenched around n=12, and when n=18~22 the value approximates to zero, due to the difference of electron transfer.  相似文献   

7.
Elastic constants of Na and Li metals are calculated successfully for temperatures up to 350K and pressures up to 30GPa using a scheme without involving any adjustable parameter.Elastic constants are assumed to depend only on an effective pair potential that is only determined by the average interatomic distance.Temperature has an effect on elastic constants by way of charging the equilibrium.The elastic constants can be obtained by fitting the relationship between total energy and strain tensor using the new set of lattice parameters obtained by calculating displacement of atoms at the finite temperature and at a fixed pressure.The relationship between the effective pair potential and the interatiomic distance is fitted by using a series of data of cohesive energy corresponding to lattice parameters.  相似文献   

8.
The static dipole polarizabilities of scandium clusters with up to 15 atoms are determined by using the numerically finite field method in the framework of density functional theory. The electronic effects on the polarizabilities are investigated for the scandium clusters. We examine a large highest occupied molecular orbital --- the lowest occupied molecular orbital (HOMO--LUMO) gap of a scandium cluster usually corresponds to a large dipole moment. The static polarizability per atom decreases slowly and exhibits local minimum with increasing cluster size. The polarizability anisotropy and the ratio of mean static polarizability to the HOMO--LUMO gap can also reflect the cluster stability. The polarizability of the scandium cluster is partially related to the HOMO--LUMO gap and is also dependent on geometrical characteristics. A strong correlation between the polarizability and ionization energy is observed.  相似文献   

9.
By using the molecular orbit theory, we give a new model potential acting on the excited electron within a molecule. The potential is the total interaction energy of this electron with all the nuclei and other electrons.We find that the introduction of a new model potential results in an extreme increase of the number of closed orbits as compared to the hydrogen atom. Making use of the molecular closed-orbit theory (MCOT) and the new model potential, we calculate the recurrence spectra of H2 molecules in parallel electric and magnetic fields for different quantum defects. The modulations in the spectra can be analysed in terms of the scattering of the excited electron on the molecular core. Our results are in good agreement with the quantum results.  相似文献   

10.
Structural, electronic, and magnetic properties of Au_nGd(n = 6–15) small clusters are investigated by using first principles spin polarized calculations and combining with the ab-initio evolutionary structure simulations. The calculated binding energies indicate that after doping a Gd atom Aun Gd cluster is obviously more stable than a pure Au_(n+1) cluster.Au_6Gd with the quasiplanar structure has a largest magnetic moment of 7.421 μ_B. The Gd-4 f electrons play an important role in determining the high magnetic moments of Au_nGd clusters, but in Au_6Gd and Au_(12) Gd clusters the unignorable spin polarized effects from the Au-6 s and Au-5 d electrons further enhance their magnetism. The HOMO–LUMO(here, HOMO and LUMO stand for the highest occupied molecular orbital, and the lowest unoccupied molecular orbital, respectively)energy gaps of Au_nGd clusters are smaller than those of pure Au_(n+1) clusters, indicating that Au_nGd clusters have potential as new catalysts with enhanced reactivity.  相似文献   

11.
张川晖  崔航  申江 《中国物理 B》2012,21(10):103102-103102
The structure and the magnetic moment of transition metal encapsulated in a Au 12 cage cluster have been studied by using the density functional theory.The results show that all of the transition metal atoms(TMA) can embed into the Au 12 cage and increase the stability of the clusters except Mn.Half of them have the I h or O h symmetry.The curves of binding energy have oscillation characteristics when the extra-nuclear electrons increase;the reason for this may be the interaction between parity changes of extra-nuclear electrons and Au atoms.The curves of highest occupied molecular orbital-lowest unoccupied molecular orbital(HOMO-LUMO) gap also have oscillation characteristics when the extra-nuclear electrons increase.The binding energies of many M@Au 12 clusters are much larger than that of the pure Au 13 cluster,while the gaps of some of them are less than that of Au 13,so maybe Cr@Au 12,Nb@Au 12,and W@Au 12 clusters are most stable in fact.For magnetic calculations,some clusters are quenched totally,but the Au 13 cluster has the largest magnetic moment of 5 μ B.When the number of extra-nuclear electrons of the encapsulated TMA is even,the magnetic moment of relevant M@Au 12 cluster is even,and so are the odd ones.  相似文献   

12.
In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeχe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.  相似文献   

13.
In this paper the equilibrium structure of HCO has been optimized by using density functional theory (DFT)/ B3P86 method and CC-PVTZ basis. It has a bent (Cs, X^2A') ground state structure with an angle of 124.4095 °. The vibronic frequencies and force constants have also been calculated. Based on the principles of atomic and molecular reaction statics, the possible electronic states and reasonable dissociation limits for the ground state of HCO molecule have been determined. The analytic potential energy function of HCO (X^2A') molecule has been derived by using the many-body expansion theory. The contour lines are constructed, which show the static properties of HCO (X^2A'), such as the equilibrium structure, the lowest energies, etc. The potential energy surface of HCO (X^2A') is reasonable and very satisfactory.  相似文献   

14.
The electronic structures and magnetic properties of B-, C-, and N-doped BeO supercells are investigated by means of ab initio calculations using density functional theory. The magnetic exchange constants of C-doped BeO at different doping levels are also calculated. A phenomenological band structure model based on p-d exchange-like p-p level repulsion between the dopants is proposed to explain the magnetic ground states in B-, C-, and N-doped BeO systems. The evolution from the antiferromagnetic phase to the ferromagnetic phase of C-doped BeO supercell with C concentration decreasing can also be well explained using this model. The findings in this study provide a simple guide for the design of band structure for a magnetic sp-electron semiconductor.  相似文献   

15.
谢月娥  颜晓红  陈元平 《中国物理》2006,15(10):2415-2421
The nonideal effects in a quantum field-effect directional coupler where two quantum wires are coupled through a finite potential barrier are studied by adopting the lattice Green function method. The results show that the electron energy distribution, asymmetric geometry and finite temperature all have obvious influence on the electron transfer of the coupler. Only for the electrons with energies in a certain region, can the complete periodic transfer between two quantum wires take place. The conductance of these electrons as a function of the barrier length and potential height exhibits a fine periodic or quasi-periodic pattern. For the electrons with energies beyond the region, however, the complete periodic transfer does not hold any more since many irregular oscillations are superimposed on the conductance profile. In addition, the finite temperature and asymmetric geometry both can reduce the electron transfer efficiency.  相似文献   

16.
The electronic density of states, spin-splittings and atomic magnetic moments of SmCo7-xCux are studied by means of the spin-polarized multi-scattering Xα method. The results show that a few of the electrons can transfer to the Sm 5d^0 orbital due to orbital hybridization between Sm and Co. The exchange interactions between 3d and 5d electrons lead to the magnetic coupling between Sm and Co, and therefore result in the long-range ferromagnetic order in SmCo7-xCux. The Curie temperature of SmCo7-xCux is generally lower than that of the corresponding pure Co, which may be explained by the weaker average strength of coupling between Co lattices due to some negative exchange couplings mainly from the 2e site. The calculated results for the Sm5Co3oCu4 cluster may lead to a better understanding of why SmCo7-xCux is stable phase. Since the negative coupling of the 2e sites becomes small and the d bond at EF becomes stronger in contrast to SmCo7, which results in decrease of the free energy of the system, the stable ferromagnetic order forms in SmCo7-xCux.  相似文献   

17.
This paper investigates theoretically the electronic transmission spectra of the three terminal pyrene molecular bridge and the quantum current distribution on each bond by the tight-binding model based on nonequilibrium Green's function and the quantum current density approach, in which one π molecular orbital is taken into account per carbon atom when the energy levels and HOMO-LUMO gap are obtained. The transmission spectra show that the electronic transmission of the three terminal pyrene molecular bridge depends obviously on the incident electronic energy and the pyrene eigenenergy. The symmetrical and oscillation properties of the transmission spectra are illustrated. A novel plus-minus energy switching function is found. The quantum current distribution shows that the loop currents inside the pyrene are induced, and some bond currents are much larger than the input and the output currents. The reasons why the loop currents and the larger bond currents are induced are the phase difference of the atomic orbits and the degeneracy of the molecular orbits. The calculations illustrate that the quantum current distributions are in good agreement with Kirchhoff quantum current conservation law.  相似文献   

18.
The equilibrium structure of flue gas SO 2 is optimized using the density functional theory (DFT)/ B3P86 method and CC-PV5Z basis. The result shows that it has a bent (C2V ,X1A1) ground state structure with an angle of 119.1184 . The vibronic frequencies and the force constants are also calculated. Based on the principles of atomic and molecular reaction statics (AMRS), the possible electronic states and reasonable dissociation limits for the ground state of SO2 molecule are determined. The potential functions of SO and O2 are fitted by the modified Murrell–Sorbie+c6 (M-S+c6) potential function and the fitted parameters, the force constants and the spectroscopic constants are obtained, which are all close to the experimental values. The analytic potential energy function of the SO2 (X1A1) molecule is derived using the many-body expansion theory. The contour lines are constructed, which show the static properties of SO2 (X1A1), such as the equilibrium structure, the lowest energies, the most possible reaction channel, etc.  相似文献   

19.
伍冬兰  谢安东  余晓光  万慧军 《中国物理 B》2012,21(4):43103-043103
The equilibrium structure of flue gas SO2 is optimized using the density functional theory (DFT)/B3P86 method and CC-PV5Z basis. The result shows that it has a bent (C2v, X1A1) ground state structure with an angle of 119.1184°. The vibronic frequencies and the force constants are also calculated. Based on the principles of atomic and molecular reaction statics (AMIIS), the possible electronic states and reasonable dissociation limits for the ground state of SO2 molecule are determined. The potential functions of SO and 02 are fitted by the modified Murrell-Sorbie+c6 (M-S+c6) potential function and the fitted parameters, the force constants and the spectroscopic constants are obtained, which are all close to the experimental values. The analytic potential energy function of the SO2 (X1A1) molecule is derived using the many-body expansion theory. The contour liues are constructed, which show the static properties of SO2 (XIA1), such as the equilibrium structure, the lowest energies, the most possible reaction channel, etc.  相似文献   

20.
The multi-electron capture and loss cross-sections of Ar~+–Ne collisions are calculated at absolute energies in the few-keV/a.u. regime. The calculations are performed using a novel inverse collision framework, in the context of a time-dependent density functional theory, combined with molecular dynamics. The extraction of the capture and loss probabilities is based on the particle-number projection technique, originating from nuclear physics,but validly extended to represent many-electron systems. Good agreement between experimental and theoretical data is found, which clearly reveals the non-negligible post-collision decay of the projectile's electrons, providing further evidence for the applicability of the approach to complex many-electron collision systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号