首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以农业废料棉花秸秆作为原料,采用化学活化法,氯化锌为活化剂制备高效的生物质活性炭。研究了浸渍比、活化剂浓度、活化温度、活化时间4个工艺参数对制备活性炭的得率及吸附碘值的影响。找到其最佳制备条件:浸渍比为4∶14(g·mL~(-1)),氯化锌浓度为3mol·L~(-1),活化时间为500℃,活化时间为100min,在此条件下制得的活性炭其吸附碘值为1 050mg·g~(-1),得率为53%,比表面积为1 383.7m2·g~(-1),总孔容积为0.766cm3·g~(-1),平均孔半径为1.1nm。考察活性炭在吸附时间、投加量、pH条件下对亚甲基蓝的吸附量,初始浓度为50mg·L~(-1)的亚甲基蓝,活性炭吸附量达到49.4mg·g~(-1),吸附等温线可以用Langmuir模型描述。  相似文献   

2.
脱除模板剂后的TS-1分子筛通过TPAOH后处理可形成空心TS-1分子筛。催化加氢裂化法和焙烧法都能脱除TS-1分子筛中的模板剂,但前者对应的空心TS-1分子筛具有更高的比表面积和孔容。此外,TPAOH浓度也影响空心TS-1分子筛的形成。随着碱浓度的增加,溶蚀-再结晶过程加剧,空心孔隙体积增加。在分子筛/TPAOH/H_2O质量比为1/3/5时,BET比表面积和孔容可达460 m~2·g~(-1)和0.61cm~3·g~(-1)。  相似文献   

3.
以核桃壳为原料,氯化锌和碳酸钾为活化剂,微波加热为能源制备活性炭。研究了微波功率、微波作用时间、剂料比对制备活性炭的产率及吸附性能影响。最佳工艺条件为干核桃壳:氯化锌:碳酸钾(质量比)为1∶1∶1,微波功率600 W,活化时间7 min。在该条件下制得的活性炭碘值为1 073.8 mg/g,测得该活性炭比表面积为1 003.8 m2/g,孔结构以1~10 nm孔径为主。活性炭对双酚A的吸附符合Freundlich吸附等温规律。  相似文献   

4.
以污水处理厂剩余污泥为原料,采用玉米棒灰浸取液代替化学活化剂热解污泥制备吸附碳材料,通过H_2S的穿透时间、碘值以及亚甲基蓝吸附值等指标确定样品的最佳制备条件。结果表明当污泥与玉米棒灰的质量比为1∶2,活化温度为600℃,N_2氛围下活化1.5 h所制得的碳材料具有最佳的脱臭性能,在出气H_2S浓度不超过30.0 mg·m~(-3)时,H_2S的穿透时间可达145 min,其脱臭性能远高于商品活性炭,此时亚甲基蓝吸附值和碘值分别为39.94 mg·g~(-1)和867.4 mg·g~(-1);剩余污泥的热重分析说明碳材料孔的形成主要发生在178~600℃范围内,扫描电镜、孔结构和比表面积的表征显示材料表面粗糙,介孔发达;红外光谱显示出碳材料含氧、含氮官能团丰富,而这些因素均有利于H_2S气体的吸附脱除。  相似文献   

5.
以梧桐树叶为原材料,KOH为活化剂,采用一步法制备生物质炭,并研究其吸附性能。通过扫描电子显微镜、比表面积及孔径分析仪观察到所制备的生物质炭存在丰富的孔隙结构,比表面积为1 795.36 m~2·g~(-1),总孔体积为0.94 cm~3·g~(-1)。25℃下,生物质炭对亚甲基蓝呈现出优良的吸附性能,饱和吸附量为832.50 mg·g~(-1)。拟合结果得知,生物质炭对亚甲基蓝的吸附过程符合准二级动力学模型和Langmuir模型。本研究为废弃生物质的资源化利用提供了一种技术手段,具有理论意义和实用价值。  相似文献   

6.
微波加热制备烟杆基高比面积活性炭的研究   总被引:2,自引:0,他引:2  
以农林废弃物--烟杆的炭化料为原料,采用微波加热氢氧化钾活化法制备了高比表面积活性炭.研究了微波加热时间和碱炭比对活性炭的得率和吸附性能的影响,得到了优化工艺条件,即当微波功率为700 W,加热时间为30min,碱炭比为4:1,所制备的活性炭碘吸附值为2 239.1 mg/g,亚甲基蓝吸附值为652.5 mg/g,得率为25.48%,产品的吸附性能超过了双电层电容器专用活性炭(LY/T 1617-2004)标准的要求,同常规加热相比,加热时间缩短了87.5%.同时测定了优化工艺条件下制备活性炭的氮气吸附等温线,通过BET法计算了活性炭的比表面积,并通过非定域化密度函数理论表征了活性炭的孔结构.该高比表面积活性炭微、中孔发达,比表面积可达3 406 m2/g,总孔体积为2.157mL/g.  相似文献   

7.
将活性炭Fenton再生和微波再生结合,考察了辐照功率和辐照时间的影响,结果表明在功率和时间分别为700 W和2min时再生效率达95.16%,研究了上述再生方法对活性炭吸附性能和结构特性的影响及活性炭经Fenton-微波再生后表面官能团变化,优异的吸附性能源于活性炭再生后孔径分布和比表面积的优化.将此方法用于连续流试验,同样考察了辐照功率和辐照时间的影响,在功率为2 000 W,时间为50s时再生效率达到83.66%.在此条件下进行6次循环吸附再生,前3次再生效果较好,随着次数的增加,吸附性能下降.  相似文献   

8.
微波诱导过氧化氢氧化处理含油废水   总被引:1,自引:0,他引:1  
采用微波诱导氧化工艺(MIOP)处理含油废水,分别考察了活性炭种类、活性炭质量、H2O2体积、微波功率、微波辐射时间和pH等因素对处理效果的影响。实验结果表明,微波诱导氧化对含油废水COD的去除率达到86.8%。最佳处理工艺条件为:5 g活性炭与50 mL含油废水混合(固液质量比为1∶10),微波功率为480 W,辐射时间为4 min,H2O2体积为1.5 mL,FeSO4质量为0.07 g,pH为3。  相似文献   

9.
微波诱导热解污泥制备吸附剂的研究   总被引:7,自引:0,他引:7  
为实现污泥的资源化,用微波诱导热解污泥制备污泥吸附剂.采用碘值分析、扫描电镜分析和处理模拟染料废水的方法研究微波功率、投炭量和微波辐照时间对污泥吸附剂吸附性能的影响.通过实验得到该法制备污泥吸附剂的最佳工艺参数为:微波功率400 W,投炭量0.25%,微波辐照时间8 min,该条件下所得吸附剂碘值为303.73 mg/L,平均孔径为2.88 nm,总孔、中孔、微孔孔容分别为0.422 mL/g、0.203 mL/g、0.150 mL/g,比表面积为308.1 m2/g,处理雅格素蓝(BF-BR)和碱性品红模拟染料废水的脱色率分别达到75%和95%以上.微波诱导热解污泥制备污泥吸附剂技术可行且具有很好的应用前景.  相似文献   

10.
通过溶剂蒸发法制备了甲壳胺(CTS)/双金属硝酸盐复合膜(MN-NO_3),经氮气氛高温煅烧与空气氛回火,制备了氮掺杂的部分石墨化碳(N-PGC)/过渡金属氧化物(TMOs)复合材料,考察其作为超级电容器电极材料的电化学性能。分别研究了金属离子种类、浓度以及煅烧温度对产物结构及电化学性能的影响。实验结果表明:当金属离子与CTS的质量比为9/80时,制得的N-PGC/CoAl-TMOs复合材料在2A·g~(-1)电流密度下比电容为462.2F·g~(-1),经过500次充放电循环,复合物比电容保留率为91.9%;电流密度增加到10A·g~(-1)时,其比电容为424.6F·g~(-1),具有良好的倍率特性和循环稳定性;金属含量过高时,产物易发生团聚,导致比表面积下降;当煅烧温度为800℃时,N-PGC/TMOs复合材料性能最佳。  相似文献   

11.
通过溶胶-凝胶法合成了锂离子掺杂的磷酸钒钠(Na_(3-x)Li_xV_2(PO_4)_3)正极材料,探究了不同锂离子掺杂量对材料组成、结构及电化学性能的影响和离子传输机理。研究结果表明,锂离子的引入并不改变Na_3V_2(PO_4)_3的主晶相,但是会造成晶胞体积的减小。锂离子通过激活Na_3V_2(PO_4)_3中的Na(1)位点来提高电化学性能。具有蜂窝状结构的Na_(2.96)Li_(0.04)V_2(PO_4)_3具有较好的电化学性能,在30 C下首次放电比容量达到104.9 mAh·g~(-1),经过350次循环后其放电比容量为77.52 mAh·g~(-1);库伦效率接近100%;其钠离子的扩散系数为2.02×10~(-13) cm~2·s~(-1)。  相似文献   

12.
为达到采用微波诱导氧化工艺(MIOP)处理北系染料废水的目的,分别考察了活性炭种类、活性炭用量、微波辐射时间、微波功率、H2O2用量和pH值等因素对处理效果的影响.结果表明,6 g活性炭与50 mL北系废水混合,在微波功率为480?W,辐射时间6 min,H2O2用量2.0 mL,FeSO4用量0.07 g,pH=3的条件下,对废水COD的去除率达到98.95%.微波诱导氧化、活性炭吸附和单独微波辐射3种不同工艺的对比实验表明,微波诱导氧化有明显的优越性,且不会对环境造成二次污染.动力学研究表明,该氧化过程符合一级动力学规律,反应速率常数K=0.086 min-1,反应半衰期t1/2=8.06 min.  相似文献   

13.
通过在污泥中分别掺入铁系添加剂(氯化铁、氯化亚铁、三氧化二铁),采用化学活化法制备出改性污泥活性炭。以吸附碘值为标准,考察了添加剂掺入比例、活化剂浓度、热解温度、热解时间对活性炭吸附性能的影响。并对其结构进行比表面积及孔隙结构(BET)、表面形态(SEM)、X-射线衍射(XRD)、红外光谱(FT-IR)等表征分析。结果表明:相比于纯污泥活性炭,掺入FeCl_3、FeCl_2、Fe_2O_3制备出的改性污泥活性炭的吸附碘值分别提高了31.59%、18.23%、15.48%。比表面积分别提高了101.6%、91.4%、79%。而且表面都具有羟基、羧基、酚羟基、碳碳双键和三键等官能团。  相似文献   

14.
以脱硅稻壳残渣(DRH)为原料制备活性炭(AC),并用其处理含抗生素恩诺沙星(ENR)的废水.采用响应面分析方法(RSM)中的中心设计模型(CCD)优化吸附过程中的条件(吸附时间,吸附剂量,ENR浓度,pH).最终得到吸附恩诺沙星的较优工艺条件是:吸附时间355. 3 min,吸附剂量0. 40 g·L~(-1),ENR浓度350 mg·L~(-1),pH 7. 69,预测的最大吸附量是429. 4 mg·g~(-1).吸附平衡数据符合Langmuir和Koble-Corrigan吸附模型,温度为298 K时的最大单层吸附量为444. 2 mg·g~(-1).研究表明,脱硅稻壳基活性炭基于成本低和吸附量大的特点,是处理含恩诺沙星废水的理想材料.  相似文献   

15.
合成了负载型金属催化剂并用于催化油酸甲酯加氢制备油醇,考察了Ru/Al_2O_3和Ru/Sn/Al_2O_3催化剂对催化加氢效果的影响,结果表明:相对于Ru/Al_2O_3催化剂,Ru/Sn/Al_2O_3是具有更佳加氢催化性能的催化剂。在油酸甲酯4.0g、催化剂Ru/Sn/Al_2O_30.20g(Ru、Sn的质量分数分别为2.6%和3.0%)、反应温度270℃、反应时间6h、氢气压力5 MPa的较佳反应条件下,产物羟值191mg·g~(-1)和碘值9mg·(100g)~(-1)。分离所得催化剂不经处理重复使用6次后,所得产物的羟值和碘值分别为183mg·g~(-1)和12mg·(100g)~(-1)。采用XRD手段对使用前后的Ru/Sn/Al_2O_3和Ru/Al_2O_3催化剂进行了表征,结果表明:使用前后的催化剂在结构上没有发生明显的变化。  相似文献   

16.
核桃壳化学-物理耦合活化法制备活性炭及其表征   总被引:1,自引:0,他引:1  
采用植物废弃物核桃壳为原料,以化学-物理耦合活化法制备了核桃壳活性炭,考察了磷酸浓度、活化温度、活化时间对核桃壳活性炭碘值、亚甲基蓝吸附值和烧失率的影响。结果表明,最佳制备条件为:磷酸质量分数85%,活化温度900℃,活化时间3h。在此制备条件下,核桃壳活性炭的比表面积为1 241.81m2·g-1,吸附累积总孔容为0.90cm3·g-1,最可几孔径分布为1.62nm。采用扫描电子显微镜、透射电子显微镜、比表面积测定仪以及红外光谱仪对核桃壳活性炭的表面形貌、孔结构及表面官能团进行了分析。  相似文献   

17.
以中间相炭微球为原料,KOH为活化剂,采用微波加热与传统加热2种方法在不同条件下制备出高比表面积活性炭.研究表明:活性炭比表面积和孔容随着KOH/MCMB的增大先增大后减小,采用微波加热制得的活性炭具有较高的比表面积,KOH/MCMB较小时,比表面积和孔容随活化时间的延长达到最大值后不再发生变化,在KOH/MCMB较大时,比表面积和孔容随活化时间的延长先增大后减小,采用微波加热可大大缩短活化时间,通过FTIR分析,微波加热比传统加热所制得的活性炭具有较低浓度的含氧基团.  相似文献   

18.
采用溶剂热法成功地合成了高比表面积的类石墨相g-C_3N_4.详细地研究了合成时间对产物的形貌、晶相、阻抗、光电流响应及吸附性能的影响.结果表明,随着合成时间的增加,产物的形貌从多孔块状变成多孔片状最后形成纤维网状,比表面积较体相g-C_3N_4明显增加,尤其是多孔片状g-C_3N_4的比表面积最大,达到了102.0 m~2·g~(-1),且光电流响应值最高,阻抗值最小,对壬基酚和对硝基苯酚表现出优异的电催化活性,说明其在电化学传感方面将有良好的应用前景.  相似文献   

19.
微波诱导氧化处理直接蓝染料废水的研究   总被引:2,自引:0,他引:2  
采用微波诱导氧化工艺(MIOP)处理直接蓝染料废水,用实验方法分别考察了活性炭种类、活性炭用量、微波辐射时间、微波功率、H2O2用量和pH值等因素对处理效果的影响.结果表明,5 g活性炭与50 mL直接蓝废水混合(固液比为1∶10),在微波功率为480 W,辐射时间6 min,H2O2用量2.0 mL,pH=3的条件下,对废水COD的去除率达到97.4%.动力学研究表明,该氧化过程符合一级动力学规律,反应速率常数K=0.088 min-1,反应半衰期t1/2=7.88 min.MIOP有望在废水处理中得到广泛应用.  相似文献   

20.
采用正交试验,研究了颗粒活性炭(GAC)微波再生的最佳条件,考察了再生后GAC的孔径与表面官能团的变化.以十二烷基苯磺酸钠和腐植酸为吸附质,对比了GAC再生前后的吸附效果.结果表明:再生影响因素依次为微波功率、微波时间、载气速率,最佳条件为微波功率730,W,微波时间180,s,载气速率0.54,L/min;随着再生次数的增加,碘值减小,亚甲基蓝值增加;以N2为载气,再生后GAC的碱性官能团数量增多.再生GAC对有机物的吸附容量减少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号