首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
唐娟  孙晶  周晨  赵莹  郭欣  尹雨婷 《无机化学学报》2020,36(8):1485-1491
以稀土氧化物(Eu_2O_3,Gd_2O_3,La_2O_3)、对甲氧基苯甲酸(p-MOBA)、菲咯啉(phen)为原料制备了不同稀土离子(Gd~(3+),La~(3+))掺杂的Eu(p-MOBA)_3phen探针分子。将所合成的探针分子与甲基丙烯酸甲酯(MMA)混合,以过氧化苯甲酰(BPO)为引发剂引发聚合,制得不同稀土(Gd~(3+),La~(3+))掺杂的Eu(p-MOBA)_3phen/PMMA温敏漆样品。利用扫描电镜、紫外-可见吸收光谱、红外光谱和荧光光谱对探针分子的形貌、结构、发光性能及温敏漆的荧光温度猝灭特性进行表征。红外光谱、紫外可见吸收光谱及扫描电镜能谱分析表明,Eu~(3+)与配体p-MOBA、phen成功配位,且掺入的稀土离子(Gd~(3+),La~(3+))未改变Eu(p-MOBA)_3phen结构,说明掺入的稀土离子(Gd~(3+),La~(3+))部分取代了Eu~(3+)。荧光光谱表明,稀土离子(Gd~(3+),La~(3+))的掺入对Eu(p-MOBA)_3phen的发光均具有增益作用,并且相应的温敏漆在50~100℃温度范围内都具有良好的荧光温度猝灭特性。而且相比于镧掺杂的Eu(p-MOBA)_3phen/PMMA,钆掺杂的Eu(p-MOBA)_3phen/PMMA具有更强的荧光发射和更高的测温灵敏度。可见,不同的稀土(Gd~(3+),La~(3+))对Eu(p-MOBA)_3phen/PMMA的荧光及温敏特性影响是不同的。  相似文献   

2.
以氧化铕(Eu_2O_3)、甲基丙烯酸(MAA)、水杨酸(HSal)、肉桂酸(HCA)和菲咯啉(Phen)为原料制备了Eu(MAA)3Phen、Eu(Sal)_3Phen和Eu(CA)_3Phen探针分子,并将不同探针分子分别加到甲基丙烯酸甲酯(MMA)中,在过氧化苯甲酰(BPO)引发下聚合,制得一系列温敏漆样品。采用红外光谱仪、荧光光谱仪和扫描电子显微镜对探针分子的结构、发光性能、形貌和温敏漆的温度猝灭性能进行了表征,研究了不同配体对探针分子发光性能和温敏漆温度猝灭性能的影响。结果表明,探针分子Eu(MAA)3Phen的荧光强度明显高于Eu(Sal)_3Phen和Eu(CA)_3Phen,相应的3种温敏漆Eu(MAA)3Phen/PMMA、Eu(CA)_3Phen/PMMA和Eu(Sal)_3Phen/PMMA均有良好的温度猝灭特性,但是对比发现在55~65℃范围内Eu(MAA)3Phen/PMMA和Eu(CA)_3Phen/PMMA温敏漆的灵敏度较高,而在35~45℃范围内Eu(Sal)_3Phen/PMMA温敏漆的灵敏度较高,可见不同的温敏漆适用于不同的温度范围。  相似文献   

3.
利用氯化铕(EuCl_3)、二苯甲酰甲烷(DBM)和联吡啶(Bipy)为原料合成了Eu(DBM)_3Bipy探针分子,并将探针分子掺入到甲基丙烯酸甲酯(MMA)中,在过氧化苯甲酰(BPO)引发剂的作用下聚合,获得温敏漆Eu(DBM)_3Bipy/PMMA。采用红外光谱仪、紫外吸收光谱仪、扫描电子显微镜和荧光光谱仪对探针分子的结构、形貌、发光性能和温敏漆的温度猝灭性能进行了表征。红外及紫外吸收光谱分析发现稀土离子Eu3+与配体配位成键,成功合成Eu(DBM)_3Bipy探针分子;扫描电镜及能谱分析表明Eu(DBM)_3Bipy探针分子呈碎片状,大小约为150 nm,且主要由C、N、O和Eu四种元素组成;荧光光谱表明,在367 nm激发下,Eu(DBM)_3Bipy探针分子的最佳发射波长位于612 nm,且第二配体Bipy对Eu(DBM)_3的荧光发射具有增益作用。在不同温度下测试温敏漆的荧光发射特性,发现温敏漆Eu(DBM)_3Bipy/PMMA在40~90℃温度区间内具有良好的荧光温度猝灭特性,测温灵敏度最高的温度区间位于40~60℃。  相似文献   

4.
利用氯化铕(Eu Cl3)、苯甲酸(BA)、菲咯啉(Phen)和2,2′-联吡啶(Bipy)为原料合成了Eu(BA)_3Phen和Eu(BA)_3Bipy两种配合物,并将两种配合物分别掺入甲基丙烯酸甲酯(MMA)中,在过氧化苯甲酰(BPO)作用下引发聚合,获得不同探针分子的两种温敏漆Eu(BA)_3Phen/PMMA和Eu(BA)_3Bipy/PMMA。利用红外光谱、紫外吸收光谱和荧光光谱对两种探针分子及温敏漆的特性进行了表征,分析结果表明,探针分子Eu(BA)_3Phen的荧光强度明显强于Eu(BA)_3Bipy,相对应的两种温敏漆Eu(BA)_3Phen/PMMA与Eu(BA)_3Bipy/PMMA均有较好的温度猝灭特性,但是对比分析发现在25~35℃和35~45℃温度区间内温敏漆Eu(BA)_3Phen/PMMA的灵敏度较高,而在45~55℃和55~65℃温度区间内温敏漆Eu(BA)_3Bipy/PMMA的灵敏度较高,可见温敏漆在不同温度区间的测温灵敏度是不同的。  相似文献   

5.
以氧化铕(Eu_2O_3)、氧化镝(Dy_2O_3)、氧化钇(Y_2O_3)、氧化钕(Nd_2O_3)、甲基丙烯酸(MAA)和邻菲罗啉(phen)为原料制备了Eu(MAA)_3phen,Eu_(0.5)Dy_(0.5)(MAA)_3phen,Eu_(0.5)Y_(0.5)(MAA)_3phen和Eu_(0.5)Nd_(0.5)(MAA)_3phen探针分子,并将不同探针分子分别加到甲基丙烯酸甲酯(MMA)中,在过氧化苯甲酰(BPO)引发下聚合,制得一系列温敏漆样品。采用红外光谱仪、能量色散谱仪、荧光光谱仪和扫描电子显微镜对探针分子的结构、发光性能、形貌和温敏漆的温度猝灭性能进行了表征,研究了掺杂不同稀土离子对探针分子发光性能和温敏漆温度猝灭性能的影响。结果表明,稀土离子(RE~(3+))与MAA配位,phen参与了配位,且掺杂离子未改变Eu(MAA)_3phen结构,Y~(3+)对Eu(MAA)_3phen发光具有敏化作用,Dy~(3+),Nd~(3+)对Eu(MAA)_3phen发光具有不同程度的猝灭作用,所制备的温敏漆在25~65℃范围内均具有良好的温度猝灭性能。综合分析得出,以Eu_(0.5)Y_(0.5)(MAA)_3phen为探针分子的温敏漆具有更好的应用前景。  相似文献   

6.
稀土钇掺杂Eu(TTA)3/PMMA温敏漆的制备及性能分析   总被引:2,自引:2,他引:0  
本文以氯化铕、氯化钇、噻吩甲酰基三氟丙酮(TTA)为原料合成了钇掺杂Eu(TTA)3探针分子。将探针分子掺杂到聚甲基丙烯酸甲酯(PMMA)基质中,获得稀土钇掺杂Eu(TTA)3/PMMA温敏漆。采用IR、紫外吸收光谱和激发发射光谱对探针分子结构及温敏漆荧光特性进行了表征。红外光谱表明,稀土Eu(Y)与TTA形成配位键,且钇的掺入未改变Eu(TTA)3结构。紫外吸收光谱表明,探针分子的最佳吸收波段位于290~376 nm处。激发发射光谱表明,在340 nm激发下,温敏漆在614 nm处有最强发射峰,且钇对Eu(TTA)3发光具有增益作用,当钇含量为50%时,增益作用最强。不同温度下发射光谱表明,随着温度的升高,温敏漆的荧光发射强度逐渐减弱,说明温敏漆具有良好的温度猝灭特性,且掺入钇后温敏漆的测温灵敏度有所提高。  相似文献   

7.
利用氯化铕(EuCl3)、二苯甲酰甲烷(DBM)和联吡啶(Bipy)为原料合成了Eu(DBM)3Bipy探针分子,并将探针分子掺入到甲基丙烯酸甲酯(MMA)中,在过氧化苯甲酰(BPO)引发剂的作用下聚合,获得温敏漆Eu(DBM)3Bipy/PMMA。采用红外光谱仪、紫外吸收光谱仪、扫描电子显微镜和荧光光谱仪对探针分子的结构、形貌、发光性能和温敏漆的温度猝灭性能进行了表征。红外及紫外吸收光谱分析发现稀土离子Eu3+与配体配位成键,成功合成Eu(DBM)3Bipy探针分子;扫描电镜及能谱分析表明Eu(DBM)3 Bipy探针分子呈碎片状,大小约为150 nm,且主要由C、N、O和Eu四种元素组成;荧光光谱表明,在367 nm激发下,Eu(DBM)3 Bipy探针分子的最佳发射波长位于612 nm,且第二配体Bipy对Eu(DBM)3的荧光发射具有增益作用。在不同温度下测试温敏漆的荧光发射特性,发现温敏漆Eu(DBM)3Bipy/PMMA在40~90℃温度区间内具有良好的荧光温度猝灭特性,测温灵敏度最高的温度区间位于40~60℃。  相似文献   

8.
以氯化铕、氯化镧、噻吩甲酰基三氟丙酮(TTA)为原料合成了Eu0.5La0.5(TTA)3探针分子,将探针分子与甲基丙烯酸甲酯(MMA)混合后聚合,获得Eu0.5La0.5(TTA)3/PMMA温敏漆。采用红外光谱、扫描电镜、紫外吸收光谱及荧光光谱对探针分子及温敏漆性能进行了表征。红外光谱表明,Eu(La)与TTA形成配位键,且镧的掺入并未改变Eu(TTA)3结构;SEM照片显示探针分子为片状晶体;紫外吸收光谱表明,探针分子的最佳吸收波段位于226~381 nm处。340 nm激发下,发现温敏漆在613 nm处具有最强荧光发射峰,且镧的掺杂对Eu(TTA)3发光存在增益作用;不同温度下荧光光谱表明,随着温度的升高,温敏漆荧光发射强度逐渐减弱,说明温敏漆具有良好的温度猝灭特性。  相似文献   

9.
利用氯化铕(EuCl3)、苯甲酸(BA)、菲咯啉(Phen)和2, 2'-联吡啶(Bipy)为原料合成了Eu(BA)3Phen和Eu(BA)3Bipy两种配合物, 并将两种配合物分别掺入甲基丙烯酸甲酯(MMA)中, 在过氧化苯甲酰(BPO)作用下引发聚合, 获得不同探针分子的两种温敏漆Eu(BA)3Phen/PMMA和Eu(BA)3Bipy/PMMA。利用红外光谱、紫外吸收光谱和荧光光谱对两种探针分子及温敏漆的特性进行了表征, 分析结果表明, 探针分子Eu(BA)3Phen的荧光强度明显强于Eu(BA)3Bipy, 相对应的两种温敏漆Eu(BA)3Phen/PMMA与 Eu(BA)3Bipy/PMMA均有较好的温度猝灭特性, 但是对比分析发现在25~35 ℃和35~45 ℃温度区间内温敏漆Eu(BA)3Phen/PMMA的灵敏度较高, 而在45~55 ℃和55~65 ℃温度区间内温敏漆Eu(BA)3Bipy/PMMA的灵敏度较高, 可见温敏漆在不同温度区间的测温灵敏度是不同的。  相似文献   

10.
以氧化铕(Eu2O3)、甲基丙烯酸(MAA)、水杨酸(HSal)、肉桂酸(HCA)和菲咯啉(Phen)为原料制备了Eu(MAA)3Phen、Eu(Sal)3Phen和Eu(CA)3Phen探针分子,并将不同探针分子分别加到甲基丙烯酸甲酯(MMA)中,在过氧化苯甲酰(BPO)引发下聚合,制得一系列温敏漆样品。采用红外光谱仪、荧光光谱仪和扫描电子显微镜对探针分子的结构、发光性能、形貌和温敏漆的温度猝灭性能进行了表征,研究了不同配体对探针分子发光性能和温敏漆温度猝灭性能的影响。结果表明,探针分子Eu(MAA)3Phen的荧光强度明显高于Eu(Sal)3Phen和Eu(CA)3Phen,相应的3种温敏漆Eu(MAA)3Phen/PMMA、Eu(CA)3Phen/PMMA和Eu(Sal)3Phen/PMMA均有良好的温度猝灭特性,但是对比发现在55~65℃范围内Eu(MAA)3Phen/PMMA和Eu(CA)3Phen/PMMA温敏漆的灵敏度较高,而在35~45℃范围内Eu(Sal)3Phen/PMMA温敏漆的灵敏度较高,可见不同的温敏漆适用于不同的温度范围。  相似文献   

11.
[Lu(POA)3(phen)]n的合成及晶体结构   总被引:2,自引:0,他引:2  
稀土与羧酸多元配合物具有多种形式的分子构型及配体多面体,结构形式多种多样[1].它们在光、电、磁、萃取、分离、杀菌剂等很多方面有广泛的应用前景,一直为国内外学者所关注[2,3].稀土和芳香族羧酸能形成聚合网络及链状结构[4],本文报道了新的链状化合物[Lu(POA)3(phen)]n的合成与结构,对于丰富稀土配合物不失为一项有意义的工作.  相似文献   

12.
Compounds [Sm(m-CIBA)3phen]2.2H20 and [Sm(p-CIBA)3phen]2·2H20(m-CIBA=m-chlorobenzoate, pClBA=p-chlorobenzoate, phen=l,10-phenanthroline) were prepared. The dehydration processes and kinetics of these compounds were studied from the analysis of the DSC curves using a method of processing the data of thermal analysis kinetics. The Arrhenius equation for the dehydration process can be expressed as lnk=-38.65-243.90×l0^3/RT for [Sm(m-CIBA)3phen]2·2H2O, and lnk=38.70-172.22×103/RT for [Sm(p-CIBA)3phen]2·2H2O. The values of △H^1, △G^1, and △S^1 of dehydration reaction for the title comnonnds are determined respectively.  相似文献   

13.
The X-ray crystal structures of (NH4)2(15-crown-5)3[Cu(mnt)2] (1) and (NH4)2(benzo-15-crown-5)4- [Cu(mnt)2]·0.5H2O (2) were determined. Two single crystals are composed of distinct structures of ammonium-crown ether supramolecular cation and [Cu(mnt)2]2- anion. The triple-decker dication in complex 1 and a sandwich dimmer in complex 2 were observed. X-Band EPR studies on the single crystals of both complex 1 and complex 2 have been carried out at room temperature, which revealed that complex 2 showed a perfect hyperfine structure of Cu whereas that of complex 1 could not be observed. The principal values and direction cosines of the principal axes of the g and A tensors were computed by a least-squares fitting procedure. The spin density of Cu(Ⅱ) was estimated according to the principal values of the A tensors and compared well with the results calculated based on DFT method.  相似文献   

14.
Raman and FTIR spectra of guanidinium zinc sulphate [C(NH2)3]2Zn(SO4)2 are recorded and the spectral bands assignment is carried out in terms of the fundamental modes of vibration of the guanidinium cations and sulphate anions. The analysis of the spectrum reveals distorted SO42− tetrahedra with distinct S–O bonds. The distortion of the sulphate tetrahedra is attributed to Zn–O–S–O–Zn bridging in the structure as well as hydrogen bonding. The CN3 group is planar which is expressed in the twofold symmetry along the C–N (1) vector. Spectral studies also reveal the presence of hydrogen bonds in the sample. The vibrational frequencies of [C(NH2)3]2 and HC(NH2)3 are computed using Gaussian 03 with HF/6-31G* as basis set.  相似文献   

15.
The thermolysis of complexes [Co(NH3)6][Fe(CN)6] and [Co(NH3 6]4[Fe(CN)6]3 under an air or hydrogen atmosphere at 200, 350, and 500°C is studied. The composition and properties of thermolysis products are determined. The oxidative thermolysis yields mixtures of oxides of the central metals; the reductive thermolysis yields intermetallic compounds CoFe. The density of the complexes and the specific surface area of the intermetallic compounds are measured. Average particle sizes are calculated. The morphology and dispersion of the powders are dictated by the shape and density of the crystals of the precursor double salts and the thermolysis temperature. The thermolysis chemism in the oxidative and reductive atmospheres is discussed in the context of the nature of the complex anion. Original Russian Text ? S.I. Pechenyuk, D.P. Domonov, D.L. Rogachev, A.T. Belyavskii, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 7, pp. 1110–1115.  相似文献   

16.
Cyclohexane solutions of [W(Cp)(CO)3]2 and [Mo(Cp)(CO)3]2 exhibit weak bimodal emission spectra when excited With 354 nm picosecond pulses, but do not luminesce when pumped at 530 nm. Picosecond lifetimes characterize the short-wavelength, emission bands, which may originate from metal-cyclopentadienyl CT excited states.  相似文献   

17.
18.
19.
Double complex salts (DCSs) [Co(NH3)6][Fe(CN)6] (I) and [Co(NH3)6]2[Cu(C2O4)2]3 (II) and complex [Co(NH3)6]2(C2O4)3·4H2O (III) are synthesized and investigated by single crystal XRD, crystal optics, and elemental analysis. The crystalline phases of I, II, and III (R-3, P21/c, and Pnnm space groups respectively) have the following crystallographic characteristics: a = 10.9804(2) ?, b = 10.9804(2) ?, c = 10.8224(3) ?, V = 1130.03(4) ?3, Z = 3, d x = 1.65 g/cm3 (I); a = 9.6370(2) ?, b = 10.2452(2) ?, c = 13.2108(3) ?, V = 1932.90(9) ?3, Z = 2, d x= 1.97 g/cm3 (II), and a = 11.7658(3) ?, b = 11.7254(3) ?, c = 14.1913(4) ?, V = 1304.34(5) ?3, Z = 2, d x = 1.68 g/cm3 (III). This paper investigates the products of DCS thermolysis in a hydrogen atmosphere: the intermetallic compound CoFe with the bcc parameter a = 2.852 ? for I and a heterogeneous mixture of Co and Cu in the decomposition of II. The coordinated CN and C2O42− groups then turn into NH3, hydrocarbons, and CO2. The dominant hydrocarbon is methane.  相似文献   

20.
The thermal dissociation of the [Co(en)3](SCN)3 and [Co(en)3]I3 complexes was studied by thermogravimetry, differential thermal analysis, thermomagnetic analysis, pyrolytic techniques, evolved gas analysis, and mass spectrometry, in vacuo and nitrogen atmospheres. It was found that the [Co(en)3](SCN)3 complex dissociated in four steps:
It was not possible to elucidate the intermediate compounds formed in the thermal dissociation of the [Co(en)3]I3 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号